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! _ The eelf-induced evolution of a vor_x sheet was simulated by modelling

the sheet using an integration of discrete elsmenm of vorticity.

Replacing renal1 mctioua of a vortex sheet by flat pan¢is of consr_nt

vorticity is found to Teproduce more accurately the initial conditions for

the Lagrangian simulation technique than replacement by point vortices.

Tie flat panel method for the vortex sheet was then extended to model

anisymme ,_. vortex sheet& The local and far field velocities induced

by the ax_.jmmetri_ panels were obtained using malched asymptotic

analysis, and eome of the uncertainties involved in other models of the

_ymmetric vortex sheet have b_n ellw.inatcd. One important result

of this analysis is the determination of the proper choice of core size

for a circular vortex filament which may replace a section of an

axisymmetfic vortex sheet. RoU-up of both two-dhnension_! eud

aTisymmetric vortex sheets was computed using the l_nel methods

developed in the report.

1AdaJpted £rom the S.H. T_e_t_ by Icl_ro Sugtoka, "The
_'_udy of Vortex Bheete Using a _auel _ethoA", I_,I.T.,
AUgur:t, _9_5.
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Nomenclatmoe

Roman Letters

a llalf-Width of a Panel (a - ¥_w)
b Semi-Span of tile Wing or Radius of the Rotor
(ao,b o) Position of Two_Dimensional Roll_up Core

t_ E 1 Elliptic Integral of tile Second Kind
F1 Elliptic Integral of tile First Kind
Qn Panel-lk_ition Polynomials; Bee I_qnations (2,14) _ (2.18)

' R Radius of the Axisymmetrlc Vortex Element

(Ro,Co) Position of Axisymmetric RoLVUp Core
r Distance Between Points or to the Symmetry Axis
ro Radius of Circular VorticRy lY_tribution

i. r 1 Shortest Distance _ the Vortex

• r_ Longest Distance to the Vortex
_-_., (r_) Coordinates for an Axisymmetric Cylindrical System
t s_ Line Integral Path Vector
f s Distance Along the 'Vortex Sheet or Panel

T Elapsed Time
(u,v) Velocity Components for a Cartesian System

_," Velocity Vector !
w Width of the Panel

Xo Distance from the PAge of the Sheet
Position Vector

(x,y) Coordinates for a Cartesian System on the Vortex

Greek Letters

r Circulation

I"o Refercnt_e Circuhttion; Total Circulation

• Curvature; Small Quantity Parameter
0 Inclination of a Fan¢l

K "Gradient of Circulation"; local Strength of the Vortex Sheet
_, Elliptic Integral Parameter; see Equation (2.24)
¢_ Vorticity Vector

i _ Stream Functkm
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_o (gl) Stream I,'uw"tion _lutton

_l (Xe) Stream Fu_lction Soluthm

,SupcrJcrlp_

( )_ Th© lnner..l_mit
( )o _e Outcr_Limit

Subscripts

( )_. l_crt_ining _ t_c i_Ix Panel

( )Vbyg Pert_fining to the Poi_xt llaLf-Way Between the Panels

( )_,on_o The Solution to the llomogerLco_s l_uaO, o_

( )sa Thc Inner-Solution

( )So The Intcrmcdiatc-Solu'don
( )o Pcrtalning to the Mid-Point of a Panel
( )ou_ The Outer*Solution

( )l_ The Solution ¢o _he Particular Equation i
( )_D The Two_Dimensional Solution
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Chapter 1

Introduction

1.1. Fo=ndation of Vortox Sheot Studio=

A common feature of flows =t high Reynolds number is the formation of thin

regions of sharp changes in velocity known _ shear layers. In the limit of infinite

Reynolds Number, the diffusive effect of visc_ity is eliminated, and the regiol_ of

velocity gradients arc reduced to surfaces of step Ghanges in velocity. Such surfac_s

are km_wn as vortex sheets. Althougl_ the formation of shear layer is a viscous

proc_% she_tr layers are commonly approximated by vortex shests in the study of

invicid, irrotational "l_tcntiM" flow.

A vortex sheet can be represented as an integration over infini_esmal vortex lines.

The dynamics of vortex lhles, and thus the dynamics of the sheet, are given by

Helmholtz's vortex theorem. The theorem shows that vortex lines arc material lines of

the fluid and are convecl_d by the local flow. In flows w_.thout sourcas or sinks, the

distribution of vorticity determines the flow. If the flow is irvotational, the vorticity
1

is concentrated in small regions of the fluid. Thus, an unsteady potential flow can be _

determined by tracking the vortex sheet as it is moved and deformed by the flow

field.

A rigorous approach to tracking a vortex sheet wil_ involve solving singular in_gro_

differential ©quations. The time integration can be simplified by using a numerical

_heme involving finite increments in time. llowever even with this simplification, a

rigorous reprtvcntation of the vortex sheet will t_ake the contour integral intractable,

Thus, a further numerical approximation n_ust be used to represent the continuous

w)rtex sheet using finite, di_rete elements of circulation.

The linear instability of a vortex sheet can be shown analytically, hut its sub_uent

00000001-TSA11
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deveh_pment is dlffictdt to describe. IAIx]r_Tory ext_rinn_ntn with thin Nhcar ]ayel,_0

which are e_pected t_ I_ _imilar t_ vortex Nh_t_, nhow _p_ntane_ms generation and

gr_wth of sl_tt,tlly I_rkalh: r_dlup, TIds instability of the altear layer, knower, as the

KelvinIlehuhtdtz lnmt_d)ility, was the aub,_ct of tire first numerical atudy of vortex

|h_t_ |)y R_ltltcad [1_ lU this studyp a continut,_._ two dJmeoslooal VOrteX sheet W_;

reph_ed by a collection of diw_rete lX)hl_ of fiqite circulation, or l_int w)rtit_s, ?'he

initial flat geometry of the vor_x M_cet wan represented by a straight row of l_lnt

vorti_ lh_enbead titan adopted A Lagr_ngian approach of following each l_Aut vortex

over time. The motio_s t,f the vortices are ti_e _esult of the flow induced by the

l_rticular arrangement of vortit_ for e_ch step in time. R_enhead'u ceIculation_

_howed that the vorti_ form lc_ spiral_ within a small number of time stel_ if

the initial arrangement of vortices were given n small peri(_lic di_palcement, lkc_u_

of the tulious manual computationo involved, Rt_enhe_d proceeded no further than the

¢_rly stages of roltup. As a _esul_, the problems associated with this I_grangian

method were not k,_own until _any years l_ter.

The Legrsngisn approach to the initi_ value problem involving vortex sheets is not a

u_iversally aceepted concept. A pioneering effort by Birkhoff and Fisher [2] questio.ued

the foundation of vortex sheet studies for invicid fluids. They were skeptical of the

well lx_edness of applying invicid nnolysi_ to the dynamics of a viscously generated

phenomenon. A r_cent revLcw of the work in this area c_n be found in the article

by Self man and l_ker [3]. [
[

Undaunted by questions regarding the welt-I_scdne_ of the method, for the last _ _

fifteen years there h_ been an increasing interest in refining R_nhcad's technique.

1"here are two reasons for the revival of interest in this area of study. First, the

incre_ in availablity of vowerful computers encouraged the development of

comput_ttonni fluid dynamics. Second, the desire to extend the invicid analysis for

high.sp¢_ aerodynamics to free vortex wakes ho_ encouraged the development of the

numeri_l appro_ch_.

0000000]-TSA] 2
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1.2, Irmtabllltles In N_me, Ic=l Vortex Sheet Modal_

The Lagrangi,m apim_ch to jimulattug a w)rt=x mhcct is often plagued by tnntzoliti_

(ztizg_l by the numerical appr_mcl_,the rammer in which vorl_x sll_t_ are m(_lelhy_,

and the inherent in_mhility of an actual vorl_x =heat, 'l'ite firaL IN ununlly due to the

ina_uraci¢_ hdmre_t in nutnetic_tl time integration tcc)nfltiu_ end in approzlnmthlg the

varylug geometry oi' the verier Miter, _11_e_md r_nw_ of Jnntahltity iH doe to lure

of a_u_acy dictated by tl_¢ atnount of a_mpututiotl available for the p_dtlcm, h_

order tit m_ttsfy the prnettegl }hntt_tion_ in _omputtug, the number end the e.ompiezity

of vortex elemcnt._ mu_t be reduced, Since tile J._g_aug!._ technique us¢_ tlxe r_tlit of

each time _tep _ the input for the next time step, lnaccuracica in th© technique

¢oml)oUn_ over time. llowcvcr, indi_crlmhmtc eliminatio_ of tns_biitty 1_ undesirable

since the phy_!cal ir,_tahility of a vortex street i_ indistingul_hMlle from tile artlfl¢l_l

inst_billty. "|he inherent inst_blHty of the vortex sheet is the mo_t Itnpormnt soux_¢

of difficulty in the coiculation of vortex aheet behavior.

Vortex sheet_ can be m_lclled in many way_ but whether tl_c models earl

realistically represent an inflniteamally thin sh_r layer is often not clear. Moore [4]

h_ demons_ratsd that point-vortex methods will always be unstable, lie found that

the numerical ix_tabLtity mimics the KelVinL.IIelmholtz instability in which the _mullcst

wavelength r_olvable, using points equal to twice the spacing, was found to be the

most rotatable. However, thi_ instability cou._ea the vortex _heet beh_g represented by

the point-.vortices to cro_ it.ll, which is inconsistent with the allowed behavior of

material surfaces. In tile most _uccc_t'ul rx)intovortex methods, the vortices are _'L

repeatsdly redistributed along the _hect which unintentionally acts as a low pa_ filter, _

damping out the instability to delay tile onset of chaos.

].laker [5] :,rid Murman [6] have tackled tile vortsx sheet problems truing a mixed

LagrangisnoIiul©rl_n approach, commonly refcred to _ the "¢lond-.in,_ll" approach, In

this re:heine, the Euler :Equation for the flow is solved for each ¢¢]1 formed by a

spatial grid network. The use nf the Euler Equation ellowq the use of a fast Poison

Solver to significantly increases the efficiency of the numerical m©thod, Murman

confin_ the cix_ulation to _ortice_ which are ¢x)nvectsd lndei_ndently. Otherwise

vet|icily diffuses nuraericMly, at_d ,_tructures with grid related length _les appear.

Whether them atructur_ repr_cnL_ physically te_|istic features which are tot) atoM1 to
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i_e re.dyed b_ tit," grid is n.t clet,;, On the _,lther hand, although the small .tale

structures f.und b.v Mtstre are aupptca_d, Murmuu's method _n n(_t reproduce, the

smtx|tb spiralling nail up existed in _ vnrf/_x shec.t.

Spectral mcthc_ds have b_en applied to a assail number of cas¢_ with simple

geometries to study W_xtex edteetitab!lity. Tiw, p:_oblcmaddre_cd by Rt_cnhead has

been studied using t,hc Sl_CCtraln_ethod by Mot)_e [7] mad by M©h'on) Baker, and ths,,_g

[[_ The f¢)rJner _dlh'c._,_edInfi.ite.'_mal pcrturl_ations, while the latter add_cA_ed finite

aml)litudc disturbartces. They Ix)th _rrived at ¢_)nsistent r_ult. SIngularitic.s in the

t'or_n of infinite curvature of the vortex sheet were detected within a finite amount

of evolution time. Although the method %csult__pt_ear to be extremely reliable, they

are too limited to be useful for practical problems such as the one di_u_d below.

They do however fllttstxate the futitlity of _lgorously following the evolation of a

vortex slteat at i_finite_nxal spatial mc_l_.

1.3. Applic_tion to w_ke of a lifting =;t_rf_ce

Any lifting surface of a finite span trails a shear layer ;n ,% _':.,ke, _.ommoniy

referred to es tile wake vortex sheet. This sllear layer can be p)_u'_ed by separation

at the leading edge of' a highly swept delta wing at high angles of attack or b_ the

It, s of vorticity from the vortex "bound" by the aerofoil. In the early 1920's. _taz_dtl

hypoth_izcd that the ¢(_ of wake vortex =sheets roll-up Into exlx)nenti_! spirals.

Keden [9_ using dimensio_at argument& derived the behavior near the edges of the

vortex sheet _.railed by a whig with an elliptic lift distribution. This distribuhon is

important in efficient airplane d_sign _ince it induces a ¢o_nt downwash which

minimi7_s the h_duccd drag for a given e_spact ratio. Using dimensional argu_euts,

Kaden found that the rollup produced a spiral of 2/3 l_Wer and from this the center

of the spi_l c_n be approximated. ]Betz it0] attempted to calculated the distribution

vorticity in tlie spiral by con_rving circulation and impulse, llowever, lktz's constant

which determines the exact shape end tile distibution of vorticity with the spiral w_

later shown to U¢ incorrvct by l_llin [11[

Rosenhead's method was first applied to "Keden's Problem" by We_twater [12_ In

order to study the three,dimensional geometry of the trailing vortex sheet, W_twater

replaced the stre_mw[_ coordinate by a time .like coordinate to form an unsteady, two-.

_t
%
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i_.|_ dimensional pn_as. 'l'hiri is equivalent t_ havlug the sheet crcm-_ection being swept

away' from the wing which generated it. This prtr._hire, known as the Trefftz planeE

_!, method, is now universally used to ,tudy wake vortex sheets where the deformation

in the streamwise direction is amumed to be small. Weetwatar discrctizcd the trailing

vortex sheet by _mpl,cing 20 segments of the ahcct with point vortices of the Mine

i circulation. The vortices ,re convected for each tlm_tep by veloeitiea they induce on
i .

each other. Although the vortices t_ll_ up more or less ,moothly, the spirM did not

i quite match Kaden's result. The inaccuracy of W_stwater's t'_ult w_ initially

i attributed to the insufficient number of vortices dictated by lack of computational

i_ .; devi_ea.

_: Attempts to improve W_stwater's results by using more point vortices have not been

[ ": : suecagsful. Increasing the number of point°-_orticas w an found to hasten the tend¢ncy
_.*_. I

" toward chaotic displacement of vortices_ Such failures in achieving higher resolution

by increasing the number of point vortices are attributed to the singular nature of
i "'_ t

[ . , point vortices. The veloeity singularity at the location of the point vortex can be
i_:" -in

,_, removed by replacing an individual or a group of vorticas with a nonsingnlar
[ '

Lt I distribution of vorticity. However this method has bean found to only delay the onset

of numerical instability while introducing an ad hoe length parameter for the size of

the distribution. The failure of the discrete vortex approach may be due to the

imIx_Ssibility of reproducing the sheet-like nature by a finite member of positions. On

a sheet, each position _ its own unique orientation, which is the result of the I

sheet's continuous nature. I

The method of equal_spacad redLmretization introduced by Fink and Soh [13, 14] is

! notable for its simplicity and for its su¢¢¢_ in delaying or eliminating instability.
Fink and Soh found that replach'_g a vortex sheet segment with a point vortex at the[

[_: middle of the segment will significantly t_tut_ the discretization error. This in fact

truncates the formula for the velocity associated with a vortex panel, a small segment
t

I"-7 of the vortex sheet. By placing point vortices at equM dist_mces along the sheet, it is

i: possible to replace equal length segments of vortex sheet by point vortices at the

[_ centers of the Jcgments. Since this procedure Is repeated after each time step, Fiuk

and Soh can decrease the distances between points $s desired to resolve the rollup of a

_ finite vortex sheet. In addition to maintaining the spatial resolution, the method
[:
F_, ' reduces the singular behavior inducad by a vortex on neighboring points alot_g the

-- |
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_heet, llow_ver, singular behavior will appear when two _rta of' the vortex sheet

apprtmch each other cloetfly _ In the tllrns of it spiral.

Baker [15] questioned Fink and Soh's practice of amalgamating the inner region of

the rollup t_to a single "core vortex". "Core dumping" la a simple approximation of

the singalarhy at the edge of a finite vortex sheet, In older to analyze iUs effect,

i--, Baker used Fink and Soh's method for d_ribing the wake trailed by a ring wing, a

circular vortex sheet with sinusoidal vorticity distribution, Upon observing the failure

i of Fink and Soh's methcxl in dealing with the double-branched rollup associated with

iD the ring wing, Baker concluded that the strong core vortex must be responsible for the

_ smooth roIlup ob_rved.

i-
Hoeijmakers _nd Vtmtstra [t6] improved Fink and Soh's technique in several ways.

First, they introduced the use of u _phisticated splining technique for dividing the

_h_t into panels with small curvature and polynomial vorticity distribution,

_-. eharcterized as a second-order panel metk,od. Second, PuUJn's generalized similarity

_._ solution for rollup [11] is invoked to make core dumping acceptable. Since Punin's
analysis also applies to the double-branched rollup, the vortex sheet trailed by a ring

wing can be made to rollup just as smoothly as that for a finite wing.

lligdon and Pozrikidls [17] introduced two-dimentional panels which are circular ares

i - with a polynomial circulation distribution. Since vortex dumping was not used, only

closed and infinite vortex shee_ were analyzed. Because the panels provide a

continuou_ representation of the sheet, there is no r_striction in width of the panels,

By using smaller panels to increase local resolution, double-branched rollup can be

d_scribed without the use of core dumping. The existence of a panel size dependent

instability was mentioned, but the nature of the instabiiity w_s not described.

_" 1.4. The Motivation for this Study

i
The sire of this thesis is to provide a foundation for a vortex sheet technique which

_. offers a more accurate simulation of a thin, a_isymmetrlc shear layer. The numerical

_, technique_ similar to those developed for point-vortex methods will be adopted for flat

: Icctions of azLsymmetric vortex sheet, giving us a simple panel method for
axisymmetric geometries. A careful, systematic study of vortex sheet_ represented by

i: flat panels has been parformed to ¢xplure the strengths and weaknesses of thL't

j;
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apprcach. Unlike some studies of vortex wheet models, the accuracy of the model wHI

be ICressed more than the efficiency o£ the c_mput_tional technique, it is hoped that

much of tile artificial behavior, such as that introduced by a rigid wake analysis, can

be removed from the limulation of vortex _heet.

"]'he _xlsymmetric panel method is obtained through the extension of the two _

dimensional panel method to axlsymmetric geometries. The axisymmetric geometry is

unique for being the only three_dimentional geometry with only two-coordlnates.

Thus, unlike the general three-dimensional flow, an ax_symmetric flow can be described

by a stream function. Fortunately, many interesting flttid dynanfics phenomena exlfibit

axisymmetry. The circular jet and the buoyant plume are two examples of

axisymmetric flows which can b¢ studied easily in the laboratory. A probleJ_ of

special engineering interest is the axisymmetric equivalent of Westwater's work, the

roll-rip of the wake-sheets generated by a helicopter in hover. The roll-up of rotor

wake is extremely important to helicopter performm_c¢ because, unlike the ,,rake trailed

by airplane wing, the wake remains close to the rotor, significantly affecting the rotor

performance and acoustic.

it
_k

e
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Chapter 2

Mathematical Formulation of Vortex Elements

2,1. A Review of Concepts Regarding Vorticity

Vorticity, _, is a local property of the fluid, defined as the curl of the local
! velocity, Q;

_(i_- V X v(_ (2.1)

This vector quantity describesthe rotation of an infinitesmal element of fluid. A

vortex line is a curve which is everywhere tangent to the local vorticity vector. To

be consistent with the rotational as_t of vorticity, a vortex line must end at the

boundaries of the fluid or form a cloeed curve and may never intersect itself or

another vortex Line.

In real flows, vorticity is produced as a 8heel of parallel vortex lin¢_ known as a

vortex sheet. In invicid flow, the vortex sheet remains infinitcsmally thin and defines

a stepwise jump in velocity tangent to the sheet. The difference in velocity across the
t

sheet defines the "strength" at a point on the sheet. The vortex sheet usually roLls-up

to form what can be described as a vortex filament. In a rcal fluid, the vorticity

within the vortex filament will become smoothly distributed by viscous diffusion

within a finite time span. The structure of an evolved vortex filament is _ilar to

the asymptotic limit for an invicid vortex filament with an infinite number of layers

of vortex sheet rolled up into a region of finite ¢ro_._c.ction. In invicid analyses, a

vortex filament with a smooth distribution of vorticity i8 commonly used as a model

for a tightly wound section of a vortex sheet.

In potential flows, the circulation

r - ,,'. (2.2)

J

+,
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is a conserved quantity. This allowm tha flow as_clated With a complex vortex

my_tem to be determin©d by _umming the contrlbutionR from a finite numt_r of vortex

elements which make up the system. The amount of cjrculatiorA in eaf,_helement mtmt

equal the circulation in the section of the vortex system the element replacers. I_y

r_placing a vortex system with a set of known vortex elements with a similar

distribution of vorticity, the flow of material points in a complex vortex syBtem can

be deduced.

2.2. Two-Dimensional Vortex Elements

2.2.1. The Point Vortex

The two-dimensional form of the line vorvex is the point vortex. The velocity

induced by a point vortex can be derived from the conservation of circulation, (2,2),

around a point:

-r

2_r
V,a_I=I = 0 (2.4)

where r is the distance from the point vortex. The velocity iadncad by a point

vortex is singular when the distance from the vortex, r, equals zero. Prom the

velocity expression, the str¢_._ function of a point vortex is

-F
d./(r) --=_ In r (2.5)

or in Cart_ian coordJna_ centered on the vortex,

-r
 x.y) = --

The two-dimensional form of a vortex filament isa vortex with finite core. If the

crcm_soction of the core is clrcul_r, the flow outside the core is equivalent to the flow

induced by a point vortex of equal strength at the core's center. However, nnlike the

point vortex, the velocity i_duced by a vortex core is non_ingul_r since the vorticity

' is distributed over a fi_ite area. A Rankine vortex, an exampla of a vortex core,

conslst_ of a cylinder of fluid in solid body rotation surrounded by an irrotation_]

flow.
m_-4
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2.2.2. The Vortex Panel

A vortex pax_el is n megment of a two-dimermlonal vortex sh_t. It ls equivalent in

thr_dimenslous to a strip of vortex nh_t compoa_ of parallel, straight vortex line_,

Sin_ invicld vortex eysteraa would be made up of vortex nh_ts, accurate modelling of

invlcid vortical flow should be ]po_Ible using vortex panels.

[
: The strength of n vortex panel will dei_nd on the amount and distribution of

i circulation in the panel. For this study, a ]panel with unii_rra distribution of

I ¢ix_ulation is considered. Then the groin translation of the panel can be defined at its

mid,.poin¢, its ccntroid of vorticity. The strength of the panel can be determined by

its width and the "gradient of circulation", K, defined mathematically as

or

os

The disarete form of _ is obtained by the centrwl di-Cfercncescheme

where r t is the circulation of the i th position on the vortex sheet and S i_ the arc

length taken along tile vortex shee;, Then the strength of the i_h panel of width w

in given by

! ~ F* W-r'-Vz (22) :,-- W

,_ Thus, a panel is equivalent to a point vortex with the same circulation "6meared" into

"!. the shapo of a panel.

i lin_ making up the panel as point _orticea of inf/v.it_mal strengths. The velocity
::,_: inducted by the panel can then be ¢_btained by integrating the contributions by the

_,*i point vorti_s. This is can be accomplished by integrating along the panel, the effecta

_i of point vortiv.as with the strength
i:i

_. where _ is given by (2.7).i

00000001-TSB06



14

In order to simplify the mathem_fi_ lnvolwd, wo shall limit ou_lves to flat

vortex p_nels. In a twodimensional representation, the panel will be represented by a

line _gment having the ('.artesian ¢_ordinates

zCs)- 3o + _ cos6 (2.9)
._s) - Yo + s slnO (2.10)

where the panel at (xo,Y o) is inclined at an angle 0.

In a previo_s work on panel methods Morky [18], using fl_t panels, carried out the

direr integration of infinitesmal velocities to obtain the velocity field induced by a

panel. Since the velocity integrand is singular, this involves evaluating a Cauchy

principal value integral. However, the logarithmically singular stream function of a

point vortex is integrable. Using Equations (2.6X2.SX2.9) and (2.10), the stream

function is given by integrating along _he vortex panel:

mK

,/_x,y) = _ I'.,, tnl(x - s ¢ose)_+ (y - s stne)q as (2aI)
4r¢

_g

- I_ tn [Q_- 2s Q3 + s_] as (2.12)
47r

= _ [(_ - Q_)triO.,+ (a + Q_)tnQ, (2,1S)
4_

a"Q:_ a+Q 1

+ 2Q, + 2Q, - 4,,I
Q_ = x2 + f (2.14)
Q, = ycosO -- x#lnO (2.15) '_

Q3 = zoo.sO + y.slnO (2.16)
Q2 = Q_ - 2aQ_ + a2 (2.17)
Q, ._. Q_ + 2aQ_ + a2 (2.18)

where a is the half-width of the panel (a _ V_w).

There are two methods for evaluating the velocities from the stream functions. One

method, most suitable for Eulerian analyses with its coordinatc-.mesh, is to take finite

differences over the control-volumes. 'l_he alternate method is to evaluate the velocities,

which are derivative_ of the strea_ functions, explicitly at the prints of interest.

b
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,,(x,y) = ---. (2._9)
#y

a+O_
--E_l-s_,o 02 , ,"¢2_ ,rc_s_T) l (2.20)4,r _Q_ + 2_,o i._c,8_ +
O_

v(x,y) .__ (2,2_)
8x

a-Q3 a+Q_
= _'4,,l-co+ot,_,, - 2,1.0 (.,w-_. + .rcts-QT)1 (2.22)

The velocity field produced by the equations ate ebown in Figure 2.-I. In theee

formulas, the arc-tangent, being multiple valued on the panel, models the jump in

tangential velocity as the panel is crossed. Mathematically, the panel is a branch cut

in the coordinate space connecting the two logarithmic singularities at tl_e edges of the

panels.

2.3. Extension to Axisymmetric Geometries

2.3.1. The Axisymmetric Problem
i

An _lsymmetric vortex sheet is composed of coaxial, circular vortex lines. Thus, a

simple-minded extension c[ the Rosenhasd approach to sheet discreti_tion is to replace

point vortices by circular line vortices, However this straight-forward approach is

nnworkable because a curved line vortex is influenced by its own velocity singularity.

As a result, a circular line vortex will translate through the fluid at infinite velocities ' _'

[19_ One way of avoiding the infinite translation velocity involves using circular

vortex filaments, or vortex rings, in place of the singular line vortices. This

introduces a finite vorticity distribution which induces a finite translation velocity.

Another approach is to u_e polygons made of straight segemuts of line vortices in place

of the vortex rings. A network formed by vortex polygons is known _s a vortex

lattice. Unlike the strictly azlsymmetric models, the vortex polygons ahould be able to

display non_axLsymmetric deformetion,_ of the vortex sheet. A_Jmutlml deformations are

known to hasten the decay of vortex rings [20_ nnd should have an Ln_l_rtant

consequences for the behavior of three-dimensional vortex sheets.

tlowever, both of the above models of axlsymmetric vortex sheet require the _¢lection

of A length Parameter: the tadins of the vorte_ core or the length of a polygon

_tt

........... ............... = :====, ............. ...... ................ , == ,
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element. Thus bef.re any of the_ m_els can be used accurately, it t_ neceasarlV to

gain a better under_tanding of the behavior of vortex sheet the_e mt_els nre d_lgned

to reproduce.

The axisymmetri_ _qulvalent of the vortex panel is a "vortex band", a _¢_flon of an

axisyJnm©tric vortex sheet. It represents n finite plc_e of the vortex sheet Wldclh in

some models of the axlsymmetrlc vortex sheet, is _eplaced by vortex rings and vortex

polygons. Although a band does not _ any volume, by defining the band's

position at the mid-point of the band as was done i'or the two-dimentional panels, the

_elf-induced velocity of the based is shown to be finite.

The stream function for circular line vortic*s, expr_.d using complete elliptic

integrals EI(_,) and F1(70, is given by I_b [21_

= (r, + { F,(X)- B,(X)
27t

_, = r_ -- r, (2.24)
r_ + r I

r_ _ Least dis_nce between (x,y) and the vortex

r2 _ Oreatsst disutnca between (x,y) end the vortex

To obtain the flow for a vortex panel, this streara function must be integrated across

_he panel, resulting in n difficult double-integration of singular elliptic functions.

2.3.2. The Method of Matched Asymptotic Expansion _

If the width of the vortex baa_! is small relative to its _¢lius, an asymptotic

expansion for the stream function can be obURncd. The approach t_d here for the

vortex panel, known as the method of matched asymptotic expansion, wu also used in

a study of curved vortex filaments [22], "[_is method derivee an uniformly valid

solution which asymptotically apprcx_chca known bel_avior of the actusl stream

function. 'Dins, it is important to heuristically deduce what is exp_ted from the

stream function. We can expel the character of the stream function away from the

_and to a_pr,__.,_'hthat of the atre_m function for a circular line vortex. _hu., the

circular line vortex stream function will be used a._ the outer_solution. Near the band,

the strea_ function shonld reaerabte the two-diraensioa_l solution for a vortex panel.

llowever, the innerosotution must include efi'c_ts due to curvature in the axisymmetric

geometry.

, := =,, ......... ,,* == _= :-== = ,= ..... _ ,, :.... , ,, _ =- , ......... 2!
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The _rdinate _.y_t_ms used in the following analy_i_ are shown in Figure 2..2,

2.3.2.1. The Outer.,Suluthm

'l'he velocity away from the hand is derived from (2.23) which £1ve_

%' wry+x) Oy (r, + r_) [ _',(_1 _ _',(_,11 } (2.2.9

1t{_--_"- - (,, + ,_) I _',(_1- _g(_)I t (z2_)
v°"t "_ _,R+x) Ox

where R is tide radius of tide vor_x band.

2.3.2.2. The Inner-Solution

The azisymmetric velocity field, for a given axisymmet_ic stxcam function _, is

defined _ be

_,.,z)= (z27)
r Oz

| _r.z) _. - ---. (2.28)r Or

The irto_tionality of 1;he po_ntial flow gives

Ou O_
= o (z29)

Oz Or

Which is the same as that for two_dimensional flow, _ - O. Combining E_luations

(2.27X2.28) and (2.29) gives the g(Ner/lir_g equation for zhe axisymmetric stream
functions:

02_ 0_0 I 0¢,
+ .... = o. (2._o)

Or_ Oz2 r Or

Tills equation is _he axi_ymmetric equivalen_ of the two-dimensional stream function

equation

_-- + _ -- O. (231)
Ox_ Oy_

It is now nece_.ary to switch to a panel-centered coordinate system (x,y), originating at

the center of the vortex b._nd of radius R.

D_
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Non dlmennlooallzlng with resident _) tlt¢ o;=tcr length,_ale, radius It, gives

-_.::.+ ,--_...... ,., m O, (23,_)
#x 2 Of Z+x #x

The _oxdtuates r_n now _ xe.cated by a ,malt i_ramet_x', the curwture, which is

e _ _ where _ is the half-width of the b_nd, Resgaling (2,33) by e gives

e

Ox z Of _+ex Oz

with the understanding that (x,y) are non.dimensional, stretched ¢tx)rdinatfs,

_-- Tit. ¢xi_uded inner att_n_ function,
!--

; is ta_d to expres_ the effects of cttrvature, e, due to the perturbation of the two _

dimensional stream function, ¢/.. Ia the above aeries, terras O(e n In.) have been

included wi_h terms O(e n'l loci. Uetug thi_ expansion, the 8overntug equation(2.34)

can be broken up into equations for each order in the expansion:

Ox z 8f

Ox "_ Of 0:,

The zerothoo_dc_ equation is the governtug e_lu_tion for the two_hmensxonal stream

function(2.31). The sutmquent equations for the higher,order terms of the tuner stream

function are all Poisson's 'Equations. with the non4tom_V,eneons terms involving the

_lutitms of lower_rder equatit_ns. Thus. repetitive ev:x_uati_u t_ the Poi._m'e F_tlUation

can he n_d to obtain the desired degrw of accuracy.

By _uming the effect of curvature to be s_all, we wilt orfly nce_tto evaluate the

first term _n the exl_ansk)n. Ti_e particular _olntion for the fiat.order Poi_)n's

l_uation is

!
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Then, using (2.13) for the zerllth-order term of tile ellmnnhl]l , tile Jr,net _tream
function is

b 1

where _bhorao is some stream function satlsfylug the homogene(ms _luati(m, whidl

determined by starching the inner end outer solutiol_n nn _hown In _lte following

B': U_ing notations defined by (2.14X2.15X2.16X2.17) and (2.18), The Inner solution for

_i,'_'__ the velocity field is

- (1+_e_)t anOt,_Q_.+2co,O(,_as_T +,,mr_.)l (z4o)
1 K 1 t Q'_,I - " "" a_,2_, a+Q_,.

_b- + _e[(a-O_)tap.2+ (a + O,_)tnf21-4u
,a"O._ a+f2__" + 2Q_(arct 8 ........ + arct8 ......... )1

_. t f2, _2.-(4)

2.3.2.3,The InnerlOutcr Matching Solution

The vortex band inner stre_tu function solution (2.39) must be matched to _;he outer°

solution, w_ch i._ approximated by the circular lh_e vortex solution (2.23). First, the

._ circulations of the perturbed vortex panel and the circular line must ba alual. Then

it is necessary to equate the outerqimit of the inner-solution to tile inner-limit of the

outer-_olution using a matching criteria. The "matching solution", the intermediate

limit solution obtained using the matching criteria, will nub_luently be subtracted from

i the _um of the inner and outer solutions to produce the uniformly valid tt_ymptoticsolution. A distraction of the method of matched _symptotic analysis _n be found in

Reference [23],

The barters.limit of the outer soIution is found by expanding the elliptic integrals in

(2.23) for small complementary modulu.% I - _,_ (2.24), ns shown by Jahnke and

--f Emde [24]

¢,oo__ {_ + x ,', x

_L This result w_s _1_ obtained by Tung and Ting [25_
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The ¢_u_r,]tmit _i' the ttmerkdnllon J_ i_mud at tha llnfl1, r:L_,>a,W]L_,]_th_ panel

width and lnclhtation I_co]ne ttll|t_lj_rtant, 'i'herefor_, uHIng the apl_ro_imatlmJN

ta'c_g-_-, + ar_,tg Q4 r-_arctg Z-_ '_ 0_._ _'

w© ¢_u get tile outer-limit of tile tnnc_-solutioJ,,

--Ka X

¢J n= r!"(,t +
neglecting the higher order ter,nn.

Since the pan¢]._ sl)an the width 2a, the definition for _(2.7)

F:p_,no1 - 2 s I_ (2.44)

is euhstituted into (2.42). The complete iaterme4iat¢ stream fnpction for a vortex band

is produced the matching criteria, _homo, which equates the two intermediate limits

(2.42) and (2.43). Neglecting the higher-order tern_ the matddng grRcria is _dded to

the innerolimit of the outer aolution (2.42)

'A"

'l?ac matching criteria, _homo is obtained by equating the inner-limit of the outer "_

solution (2.45) to the outer-iinfit of the inner solution (2.43)

-/ga X
d/_° .... {In_ (] 4" _-[_} (2.46)'iT a

X r_ X

Ti_cn the raatching criteria is found to

Ka X ¢

and the intermediate etreanz function is es_b]i._hed, as shown by Hquation (2.46), to he
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r2[

_, _ (1 + 2_) m'. (2,4s)ft. a

2,3.2,,4. 'l'h_ Uoml_mite, Unlfnrnd_..Valld _tduthm

'J'|iC taau_)lete, unlfnnnly,.valld stream :l'nnctlon i'nr the axlsymnLe.tflc vortex trend tl_ a

t;gnilx_Ita ot' the lnnr, l',_)Jutlon, _A_,' the outer,_duti_)n, _,x_,' and the Jutc,z'jncdia_,

(mat_hiug) mfltttltm, _Xn' The _mJ)let© _luflon can t_c £nrmulnted _ he

¢(='Y)= _,. + _o._- ¢,o (2m)
W]lere ,

_,,, _'! Inner Sol_tioa (2,99)
x

_o _ 2"wa_Dlmenslon_ Pamel ,S'oEm_n (2,13)

41r

+ 2f2, ,ms-_. _ + 2f2, ,me-_._ 4,

= _ (r,+r2) { F,(_) -- _,(_) }

ff

using notations introduced earlier. Notice that _t n and _l 0 have been [_

redimensionali_2cd with rCSlX_Ctto the outer-dimension, R.

The above stream function L_ axisymmetrlc, thus its velocity field is defined to be

R+x Oy

_(x.y) = ........ .
a+x Ox

floweret, the tnuermolution, _tn, and the lntermcdiatc_olution0 _to' are valid only for

the inneroregion, x << R, Thus, the inner-legion velocity field, using R+x _ R, becom_

O0000001-TSB14
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I 0

while the outer velocity field remains

-1 9*o.t

x, = R+x Oy

_j

v(x.y)= 8x
Th_ th© velocity field in given by a comF,_ite _olution of the form

u(x,y)= u,.+ Uo.t.-% (2.50)
vCx.y) = v,. + Vo,.._- v_ (2_1)

where,

-_ (l+x,2_AJ Q_ a"_s a+Qsu,. _ _4_r [--alnO In= _,_+ 200*0 (arC3g---A-__R4 + arOts_E'_ )]_,

- _ x lnQz a'-Q s a+O_
v!.- 4_r(1 + _) [--cosO _,,- 2ano (arctt_- + arctr_-)l

I

4""2R [(a"_z)InQ z+ (a+Q_)lnQ, -- 4a

a-Qs a+Q.

+ 2Q,.rct_z + 212,arctg-_'el

_ _"-_a /(Z+Z)(/_-v) + (r,+r2)t_-_---_)1

_ [( + (K-E) + (r,+rz) ]
Vo._ _R+:d Oy

--t_a + x y

The relationship between l_trwof the e,o;_lplete _olution is shown by Figure 2-3,

uhowing the contributions to tile velocity profile taken radially from the cylindrical

coordinate tt_, denoted by the center-lhte, through a vortex Mud (O - 0). The

uniformly-valid, ¢oml_osit¢ _olution for the veh_:ity induced by the vortex panel,

VeereD, is denoted by cro_s_, l'_'omit,ent features in the plot are,

00000001-TSC01
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I) the I/r type slngularlty of tile outar_Ivtion at the center of thepanel (x - 0. r1 ,_ 0) mawhed by the tntermediate-_lolution,
2) the logarithmic singularities of the innsr_lution at the, panel edge,s.

The compo_i_ _olution xctalns tileOuter solutlon'a O(e erie) portion on the axis of

_ymmetry while smoothly blending in the two-dimensional inner-solution in place of

the singularity at rx ,, 0 before decaying off f-star than tile two-dimensional solution.

[_ Notice that the inner_sointion is displaced, representing the speed of the self-induced

tra_lation of the vor_x panel
_lh)

2.3.3. The Self-Induced Velocity

An important result of the preceding analysis is the scl£-induced velocity of a vortex

band. Tile motion of the vortex band is defined at the mid-paint of the band. Thus,

• using Equation (2.51), the axial speed of the panel center is found to be

i v.oo ax

I 2fir a

The radial velocity at the panel center is zero for any orientation. Thus, for the

_ present order of accuracy, O(e), the self-induced trauslation of a vortex bend, defined

at the center of the band, is purely z_xial and independent of the panel orientation.

By applying (2.44) to equate the circulations, this result can be compared to the self-

induced velocity of a ulfiform vorticity vortex ring, where _ is constant, [21, 22]

i_ i 9nnQ 2_rR ro

, Thus, the core radius of an "uniform" vortex ring must be

i

U

: o_"_0.4724

i_ in order to translate at the same vel(_ity _s a vortex panel of the s_me circulation

_nd r_dius. Since tile _elf.-induced velocity reflects the energy of the vortex element.. the ratio pursued by equating the known energy of a vortex disk wi_h the energy

_, i numerically i_tegrate_ f,_r a set of equally spac¢_t vortex _ing_.'l_e c_e diameter of
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tile vortex rings giving tile same amount of e_lergy is obtained numerically and the

ratio is the quotient of this value over the ring _pacing. ]ly increasing tile num|_r of

vortex rings, the ratio w_ found to converge to about 0.50 [26_
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Figure 2=1: VelocltyVectors.Associatedwith a VortexPanel

I
i

I

I

¢r,z)

Figure 2,-2: "J_e _ordtnace System
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Vin V_o

- _ š�Æ�Þ�Vo

( "Figure 2-3: Plot of the Axial Velocity and its Constituent Parts "_
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Chapter 3

Numerical Behavior of Vortex Elements

The FORTRAN subroutines for calculating the velocRies induced by different vortex

elements are presented in Appendix A. In this section, the differences between vortex

elements will be explored.

3.1. The Velocity Profiles of Two-Dimensional Elements

Figures 3-1 and 3-2 show velocity profiles for vortex panels. 111e velocities are

pe_pendicular to the panel-centered coordinate axes because of the panel's uniform

circulation distribution. The most important feature is the lack of a strong sigularity

| in the panel velocity profile. However, the normal velocity has a logarithmic

sigularity at the edges of the panel and no singularity in the tangential velocity, the !

latter being double-valued but finite on the panel itself. Away from the panel, the

velocity profile quickly approaches the point vortex profile. The difference in the

effect on the adjacent vortex elements is not obvious in this represen_tion.

3.2. The Velocity Profiles of Axisymmetric Elements -,

Figures 3-3,3-4,3°5, and 3-6 show the velocity profiles along the panel axes of vortex

bands _vith inclinatior_s of 0 and 90 degrees. The centerline to the right denotes the

location of the axis of symmetry with respect to the width of the panels. The self-

induced translation velocity of the vortex band appeam as the no_-zero axialvelocity

at the midpoint of the panel.

t.
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;_.3. Integration of Vortices in the Form of a Vortex Panel

As a simple te,_t of integrating vortex elements to slmu]ate a vortex sheet, vortex

elements were arranged to form a vortex panel. The flow prcxtuced by a vortex panel

of uniform circulation is de_cribed completely by Equation (2.13) and provid¢_ It

baseline for tile flow induced by the integration of "qortex elements. Figure 3"7 shows

the velocity vectors of flow around the baseline panel. The figur_ 3-8 and 3-9

shows the flow induced by four and ten point vortices, _pectively, arranged to

simulate a vortex panel. The accuracy in reproducing the baseline flow demonstrates

the gain in accuracy Itekieved by integrating more point vortice_ Of special

importance is the velocity induced on the panel repre_nted by the point vortices, The

velocities induced on the point vortices are shown along the dashed line representing

the vortex panel the point vortices repla_ For four point vortices, the singular

nature dominates the velocity near the panel. For ten point vortices, the velocity field

has a clo_er resemblence to the baseline flow. In comparison, Figures 3-10 =tad 3-11

show the flow field induced by two and ten vortex panels respectively. Unlike the

previous plots, the velocity along the integrated panel is determined along the

coordinate grid, they do not necessarily represent the velocities at the centers of the

panel& The uniform distribution of velocity along the integrated panel shows the

effective cancellation of the logarithmic _gular behavior at the panel edges. The

overall velocity fields are identical, indicating the validity of replacing a vortex sheet

with an integration of vortex panels.
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Figure 3-1: The velocity profile on axis tangential to the vortex panel

Figur¢ 3-2: The velocity profile on axis normal to the vortex p_ncl
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Figure 3-3: The radial velocity profile of a 0 deg vortex band
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Figure 3-5: "l'l_c radial velocRy profile of a 90 dog vortex band

I

I

Figure 3-6: The axial velocity profile of a 90 de£ vortex band
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- Figure 3-'/: }_line Flow: a M_xglevortex panel spanning x - :i:l
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Fggur_ 3-1_t: Vot't_x P"u_l Flow, 10 i_a_eI._
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Chapter 4

Discre_ Numerical Approximation of a Vortex Sheet

4.1. The Uniform Downwash Sol=tlon for Dl=cratlzad Vortex Sheet_

Tile mimulation of tit© vortex sheet tlailcxl by a wing with an eJlil_tic loading h_

bccn the most lx)pular application for numerical vortex sheet methods. This l_pularlty

is not 0nly due to tile practical significance of tile ©llil_tic loading but al_ bcoau_¢ tile

loading is prcdictc_l to generate only one ]_ir of _ll-up sl)iral._.

An ellil)tlc_lly loaded lifting llne, with _¢n_i_l_n b, _ the ¢i_ul_tion

distribution of tile form

X2

r(x) = ra / _ - g;/v,. (4a)

A straight lifting llnc with this distfi_t;tion will generate _ refit'otto downwash and a

flat vortex sheet into wlfich tile Ixmnd vorticity is lost a_ one proceeds outward from

mid. span. Thus the strength of tile sheet is given by

Ox
x x 2

= r. K t - 1 (4.29
llccau_.c of the ningularitias at the til_ the sheet will lmm_iately roll-up into

©xlx>_lential spirals. The rolling-up of the slicer relieves the di_v;ontinuities i,t tile

vertical velocity profile.

Num©rieal _imulation_ of the wak© sheet dynami_ nsu_P,y tgnor© the fluid dynaml(_

of the v,)rtcx sheet formation, for purples of numerical analysis, it is iml_)r_ant to

know the initial geometry of the sheet a_ld the flow a_oclated with it. In man_

Lagr_ngian approach_ to roll-up,an initial di_;tribt,tion of di._tete vortic_ is _elected

_tt
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without checking J_ ao_uracy in modelling _he initial _t_w of the vo_x she_t_ attd

the merltJ_ of the analysis af_ judge'_.lby the. quality of the resulting roll.urn.

A fla_ vt,rle_ ahe/_t wbi¢_h lr,;l,,_q a vel(_lty field which is c_)nstant Rlong the sheet

et,d singul_tr at the tip is not _dcquaTe a_ the initial r_ndition for a mlt.-up

ralcu]athm, ];_r a re|tlisti( model, ;he fla_ vortex sheet m¢xlel can only be relied for

_n "o_ter_o]uflon*'. valid awt_y from the singular d'L_o_xfir,uity at the _g¢ of the

sixeet The, an "renal _)lution" at the edge i_ need_ to give th© eff_,:t of the sh_t

roll-up which h_ exl_,ted to /'orr_ imm_iately upon the formation of th_ vortex sheet.

_lhu_ a rea]istic sirmtlation of th,.' wing wake n_uat begin with _me s_ of roll-up to

_pla_ the ti_ singularity. The same _onclush_n to have been _e_ehedflp])e_r_

_, : empirically by lloetjm_kcz_ _nd Vaa._tra [16]

"_'_ 4.L1. Point Vortex Repr©sentations of the Vortex Sheot

_._,_ For Lagrangian simulation of vortex _heet,_, the JJfitial downwa_h pr_."ile L_

_"_ reprinted by l_he velocitie_ htduc._d on each vortex e]entent. Su.rp.tisingly, past

_!_ Lnv*_tigator_ d_d not evaluate or _o_r_ment upon the aw, racy of the vort_,x she.'t mcgee!

to duplicate the jnitied condition. The ovJy pubK_hed result wi'Ach gi-;_s the Lnitial

downwash profile is We_twater's plon_riag work. I_ We_twater's h_itlal vorti_ity

distribution, an error tn the l_sition of three point vortices produvu_ a "ki_.k" in the

labial dow_wa_h prof:_le as shown by F_gute 4,,2. The toUfl circulation cot_tained by

• the sheet is 1.0, resulting in the uniform downwash result of 0.,5 for a c_ntinuov_,

flat wake vortex sheet. Although the kink is _pperent at the beginning of the

tabulated results [12], Westwater proc_dvd with the tediou_ manual calculations

: without c_rre_ting the error. Unfortunately. even though the initial downwash profile

_ cau indicate the accuracy of the vortex sheet model _nd the wlidity of the sub, queer

_,: roll-up, such ra_ult_ have not been published with the r_alte of other mi_-up

_, c_leulation_

There are two approach¢_ to _prc_cnting a vortex sheet tl_tng poin_ vortic_.

_-_ Weetwater intrt_lu_cd the method of dividing the sheet into strips of equal circulation

-L and replacing them by a pc!at vortex at tl_e centroid of vorticlty of the strip. The

• other method, used su_c._fully by F_nk and Soh, teplac._s stril_ of equal width with

:_ a p_int vortex of ¢qnivalen _. circulauon at the center of the strip. Wc_twater's method
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W_S I_pular for s lo]tg time since it con_ntrate_ tl'.¢ voxtx_% _,J ,_1_,._.x,;c_ _ traces.

particles, where w,t_t action is. oxl_ectcd, Fink anti _oh, on the other hand, designed

their method to al_plozin_te an it_tegr_.tion of fi, t panek. The downw_sh profile

_t calcu_L_d using _hese two metilcds at_ Ihov,,n in l"_gutea 4-_ and 4_4. B_th methr_m

mhat'e the smooth*t,yet IQr£e, deviation f_m _he unifolm downwash value of 0.5,

which is h-qprovcA by incrc_ing the n.m_r of' vortices u_ed. The exaggerated

nmooth_n8 of the re)deity di_c_)nUnnity epi_rs to be r_pon_ib_e _'or the extrem©ly

=: awooth ro]l..up obtained using point vort=_e_ Figure A _ displays a secondary dsvistion

by the velocity of the h_ner-mc_t point _.,ortex of the distribution. This error is

caused by the proximity to the mirror in,age of th-_ vortex which, having opposite

_ i cix_uletion, adds a significant contdbu_ on *,he,d_,wnward -elocity of the, inner-_oet

-. _* point vortex. In Figure 4-3, where there is _or_ separa,Jon betwee_ the i_uer-m0b_

me! vortex and im ad._cent vortic_, thus no deviation is observed, t_,,erall, the deviations

_:i from the predicted value of the uniform downwash are surprisingly _rge. Point

._ vortex correction derived by Van der Vooren 1, as p_sented by Moore [4], is no_

.... appiicab_e for the eq_l epec_ discreti_tion. Appl_tion of Van der Vooren's correction

_ .: to the equal strengti_ discretization did nat hnprove the calculated downwash profile,

:-* : /.-.stead of usivg the velocities induced on the v_int vortices _o ca)=ulate the motion._._ ._
' of the _or_x sheet, the downwe_h c_ be _tefined to be the velocities obtained at

-s poht_ ball.way b_tween eque£t2_ sl_r.ed _o_ir_. This is the _wo_iim_ns_a_l

equive3.ent of the quadrUater_l vortex-lattice (or "dipole") method which is ofteo used

for three-dimensioneJ fLow simulation& Figure 4_ shows the velocities at points half-

way between point vortices representing an eUiptic,ally l_ded wing wake. The !,_,

vvrtice_ are equally spaced _s in Figure 4-4. The downwa_h profile obtained by this

_- method differs substantially from the uniform lifting line downwa_h (0_) and displays

a characterdifferent from Figure_ 4-3 and 44. The "dip"in the downwash at the

_-__i end of the p_'ofll¢ is the r_u)_t of the l_rge _tep L_crease in the, vot_x _trength _t the

_, IVan der Vooren'm correction _nvolve_ the gradient o£ _he vortict_y
di_trlbut_on, result_ng in an additional point vortex_,likeoontrib_tlon

-* 'to the veloc:ti':y _nd_oad on each vortex.

i-__............................................................__
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4.1.2. Vortex Pan_I _epr©snntatl'-:n of _he Vortex Sheet

The down.ash profil_ ¢orx_aponding to Figures 4.1 and &4 for integrations of

vortex ]_e1_ are shown in _igures 4-6 and &7 r_pectively. The figures show that

en integration of j_aneL_ will prtKluce m_ch better approximation of the downwash

profile expected for a fl_t vortex sheet than pt_ible truing the some number of potr, t _
voxtic4_. N_r the tip, the d.,,viations from the uniform downw_h result x_eflocts the

large step incr_s¢ in the discretized distribution of the. vortex *beet strength. The

equal cireulatmn panel dLstlibution, Figure ,t-6, produces less panel_ where the sheet is

weak, resulting in the _naccurate velocity on the leftomo_t panel, Since the velocity

of a vortex paael is obtained at tl:o c_nter of the panel which are half-way bctWeeD ?

the loge.rithtMc singulariti_ At the panel edge, feature8 found in the velocitie_ obtained

between point vortices axe eXl_:ted. The only observed common feature is the '_ink"

ht the profile nt the next-to-_he_kst panel atso found in Figure 4-7. However, the

kink in the velocity indnced by panels is Itm .-_vere tha_ that for the velocitie_

t_ddway betwesn point vorti_ This reflects the difference in degree of regularity

pae_.._sed by the two vortex elements.

The downwash profile for the integration of equal width vortex panels clccmly

r_emble* the uniform downwash produ_d by an ellipticaLly loaded liftL_g line except

at the tip. The discontinuous nature of the downwash inhibits the smooth roLl-up of

a sheet modeiled using only vortex Imnel_ If the downwash induced on the panels

(di_regording the l_t panel at the tip) is taken to repnmcn_ the outer-_olution, then an

tnner_olution must be _Ul_rposed to represent the roLl-.up at the tip. The tip roll-up I_

can be represented by replacing the last panel on the sheet with a vortex core of the :_

e_me _trength, I_itioned in ac, ord_nce to the Keden's similarity eolution (Ses Appendix

B for details). Figure 4-8 shows the resulting smooth downwash profile. The right-

mc_t point in the profile is the downwa_h on the last panel and ire "relief" ttx tile

downw_sh profile is aigMficant: the velocity of the tip roll-up core is lxzitive and lies

ot, tside of the plot.

The downwash profile for the integlation of equal Itrength vortex panels appeatrs to

show the effect of a point vortex near the tip, the virtual core. The effoct of such tt

core c_n be demonstrated plotting the downwlmh profile cMculated with a point vortex

of the opposite sign at the tip to c_ncel out the virtual core t ct (Figure 4-9). The

t
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I shape of the downy;ash profile near the tip ls no( sensitive to the number cf pav._is,

St:gge_ting so_ne _rt of simllar,l,t._;sol_th_n at the tip. The velocltics induced on the

l_st thre_ par,©is by the tn_gration of 5 to 100 panels were ueed to de¢ermh_ _e

strength and pavilion of th_ point vortex needed to canc©l out the de,Tlation from the

m;tfovnt downwash vsine. The results, plet_.d in Figu_ 4-10 a:td 4-1_., allows tha_"

t_'.¢ vortex must be positioned 0,204 timt_ the half-width of th© le_t l_nel from the

edge of the l_st panel and contain aleut 0.0547 timc,_ the ci_:ula:ion coTt_ined J_ one

panel.

4.1.3. Vortex Band ltepresenta_lon of the Vortex She_,t

The exisymmctric equivalent of the wake _,or_e_ sheet of an elliptically lc_ded

liftin_ line is the d_k of _isymmetric vortex sheet w_ _ represents the translation of

a disk in a fluid at res*,. The first theoretical study of this flow was made by GJ.
..!

Taylor [27_ The vorticity distribution necess_,.y to obtain a ulzlform velocity profile

cn the disk of vorticity is equivalent to I_uation (4,2). "l]le only difference is the
f

factor of _ gre_ter downw_sh induced by the same amount of tote! circulation. This

I means that using the same vorticity didtrtbution as before, we expect the uniform

velocity to have the velu_ of :- - 0.7854.

The straightforward discretiz_tior, of the ax_ymmetric vorta_ sheet into circular line

vortices will not be meaningful dt_e to the infit_te sel/'oindu_ed velocities of the

voxfic_ However, it" the circular line vortices are _eplaced by vortex rings with a

finite core dimension ro, the_ the _elf-induced v¢l_ity of the vortices wLll be O(olno).

where o is the ratio between the core dimensiot_ and the ring's r_i_s. I_ additiou,

since the core represents a section of the sheet of approxhua_ely the sewe size. the self.-

induced velo_it:, is expected to be O(o_lno) when compared to the (3(1) velocity

induced by the to_al di_k of vorticity. 'Ehns. if ¢ is smel), the eff_t of the selG

induced velocity is expected to ber,ome negligible, if we hypothetically allow the

infir, ite _:lf-]nduced velocities of the circular liu¢ vortices to be neglected, then the

d_reti_l disk of vorticity will induce the downweth profile shown by Figure 4-12.

The downwx_h profile for n set equally sp_ced circular line vortices _ surprisingly

uniform and n_r the corr_t value, thv-_ demo_tstreting the tr_signific_r,_e of the _]fo

induc¢_.i velocity.

ipa-I
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If the Ir.oving disk _ di_,_r_ti'zed by" #ort_x bands, the s_if.-induced velocities of the

W! hanoi nmy be included. The r_ulting downwMh pm_i|_ is shown in l:Igure 4-.13.

l_c_pt for the magnitude of th_ velr_P._c,s, the profi!e dhtpl_ya tire same features found

tn the Win_ wake profile. Ilowever, It should b_ ,,oted _hat the sccurscy of the

velocities aoes not uniformly intprov_ with the /ncroMe in the number of vortex

b_nd_. Figure ,_-14 shows the use ,3f a tip-.ore to approxlmat_ the inner-solution

_epresenting t_'e roll-up of the tip (See Appc,dtx B for details). The shape of _e

r_,lting downw_h profile near the tip does not agree with the two-dir_ensloaal

e/.tuivalent produced by Kaden's sin_ilarity solution (Figure 4-8). This m_.y be an

Yndication th_,t the core is p_itioned too far away from the re_t of the sheet in the

apprm_nation 't_.d to model the tip region of an axisymmetric vortex sbeet. Since the

approximatio_ is no_ a similarity solution for the geometry of the tip roll-up, the

geometrical error will be reflected in the distance _etween the odge of the lest panel

and the tip-core.

. 4.2. Summttary
i

The calculated _elocitie_ of _:he vortex elements can be used to test the accuracy of

the vortex sheet model ff the velocities of the actual vortex sheet are know,_. For

elliptical loading case_ discu_'_._dabove, the velocities for each section of the vortex

sheet can be predicted. These cases also represent the initi_l conditions for interesting

problems in vortex sheet dynamics. The _bove results show the accuracy of equal

width panels in _eproducing the flow field s,way from the singular tip of the vortex

sheet. A near-field scintion for the flow a_ound the tip of the vortex shee_ can then

be approximated _ing a core o_" vorticity. The importance of the tip core is also ,,_

suggested by the virtual cote effect in the downwash calculated for the equal

ci_ulation segmentation of the Same vortex sheet. The incorporation ot a tip core in

the equal width panel method represents a etralghtforward modelling of the vortex

aheet with _ul_ which are more realistic than the results obtained using point

vortic_ alone.
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Chapter

Numerieal Shnulatton of Vortex Shc,.,t Dynamics

5.1. The I_merlcal Roll-Up of Vortex Sheets

The roll-up of t_,vodlmcnsitmal and axisymmetric vortex sheet_ were _imulated using

vortex p_me]s. The changing shape o_ the vortex sheet is determined in a L_g1_mgisn

fashion by follo;vin_ the vortex panels throughout cycle._ c_ numerical time integration.

Accuracy of the method is maintMued by reconstructing and redi_rctizing the sheet

_ime integration cycle in the manner pre_cribed by Vink and Sob [13]. A first-order

liungeoKutta scheme is u_d for each time integration cycle. The m_in differen_

between the panel method tu_d the point wrtcx method is the amount of data which

must be handled to deacriU¢ the shee_. Since the orientation and the width for each

Imnel must be recorded, the amount of geometrical data is effectiwly doubled. The

numerical scheme for following tl_e dynamics of the vortex sheet is sununurized by

the flow chart in Figure S_I.

5.1.1. The Time-lnt©gretion Scheme

The centers of the ",'ortex panels ar_ transleted using the RungeoKutta scheme during
r,I

each cycle of time integration. A vortical flow system is characterized by gradients in

velocity resulting in curved trajectories nf the conv_tr, M vorttccs. The RungeoKutta

scheme is gen©rall_ more efficient in describing curved trajectories thin the simpler

Euler scheme [28]. Euler scheme translates the control points for an short increment

in time along _ straight trajectory ba_d on the velocity at the beginning of each

cycle. Rung©-Kutta scheme, on the other hand, umm more than one wet of velocity

data to approximate t curved trajcctt_ry during each time integration cycle. If only

one additionnl velocity input is umd, the RungeoKutta scheme is refered to as being of

the first order. The panel method, un|ike the point vorte_t methods, rexluires the size

and the orisn_tion for eltch p_nel in order to cMeu]ttte meaningful velocities. Sin¢_
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¢,;;ty the ce_tte_:_t_f tim l;_V,e.tsP,'l'e_;,r,t_kedb,v the time lu_egrt_ti_tl, the tat_he _heet

n-,u_t I)o rer_m_,trm:fed in riffler _b ohtMa thL' r_l_e aud tim orienf[tl;l_ill of $11e I_tlttds.

Ilowcver, a rigor, ms reconstruction of the street tN ]d_hly t_nmputtttlon Jl_¢ensive,

Pr(_!mbly for this res_sm, _][_lJwn.k_l_ slid Vs*tt+ttra |1(_] ttsed _lt_ I!.ler _be_e with

th_h' pimel method, willie Fink _nd S_lt [14] were Mile t_ u_ a _ttnge _nttl_ _lieme

with their in,proved _)lttt vortex _cht'mc,

:t_ th© fi_st,_rdcr Ru_.,,,e,Kttt?_ _heme u_d in th_ st-tt_, tt t_'t,_q_le_pp[oxlm_t¢

reconstruction of tl_e Jnte_tedJatA4, vorr_( _heet geometry is u,ed to provide additional

velocity data. At the t_inning of the Integr_ttinn cycle., tile w,rtex pone_s arc

arranged by the t_discrctiz_tion scheme to form a contlnuoa_ vortex uhe_t attd tile

initl,,_, _t of veT,ociti_:_ are obtai_xed. Ti_etx tt_e intermediate Ix_ittons uf the l]a_el

centers arc derived using the Euler _cheme. To obtain the intermediate velocity, tl_e

fhtmges in th_ orientaion and slz_ of the panel due to the initiM deformation of the

sheet most I_. derived. Tile intermediate l_nels tire ox'lcnted l_Mlc! to the line

ei_tming the _itiuns of the two ad_cent lo_neis _entet_t (Figure _2), The width of

the intermediate panel i_ taken _o bc half th_ distance L_tween the ad,iac_nt panel

ceoter_. The new la_itions of the panel centers _re obtained by averaging the initial

and intermediate velocities end by translating the pe_el_ by the corrcc_'_ velocity for

twice the time increment used to obtain the intermediate eolutiom

5.1.2. The Reconstruction and Rediscrctization of the Vortex Sheet

The reconstruction and redis_reti_atiou of the vortex sheet are performed after each

cycle of time integration. The redi_retiz_tion procedure eUows tile vortex sheet to _e

reprudu_d by vortex i_neL_ of CtlUal width_ This t_heme also helps to main_aiu the

ac,;uracy of the l_nel _'epre_ntatiou of the vortex sh_t end helps dem[,en elmer

wavelength instabilities. The damping of the vortex sheet is Itchieved by tet_onstructed

the vortex sheet using only the p_itions of the panel centers. A paraUt_llc spJine,

_elccted ire re'dee to tote o_tt not_.,physic;_l wiggles between the e_ntrt0, palette, is fitted

to rcpr¢_nt the vortex sheet (Figure 5-3). At tits same time. a linear interi_)latlon is

_d to repr*_nt the distribution of circulation in the sheet. The new vortex Ixanels,

having equal widths, are made to span segment_ of the vortex _heet (Figure 5-4). Tile

circu)att(_n contained in the segment,_ of tile vortex sheet is transfered to the pnnels

sImnuing them. Although thig procedure reduc_ the effective radius of curvature of
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the vortex sheoet by shifting tile patiels inside a curved spline reprceenting the w)rtex

l_ _heet, the effect can be minimized by docrcJudng the Ji2_ of tile panels. In any case,

_ becttme Jt_aight tegmei_ts are being used to repre_cnt it curve, small panel width is• neccz,_ry t_ _aeinte|n the geometrical accuracy of the panel repre_nt_tic_J_. "H,e ai_ of

the segments are s.lso adjusted to muhltain tt certain relative distance between the

outer..most panel end th-_ Vortex representing the inner region of the roll-up spiral.

I[
$.1.3, The Treatment of tho Inner Roll-Up Region

As shown previously, the vortex panels alone can at mo_t reproduce the ou_r
!{

solt_tion for the flow induced by a vortex sheet. This is inadequate as an hdtial

i condition without _ model to reprc_nt the initially infinitesmal roll-up at the end of

! the sheet. Thus, the simulation of vortex sheet roUup beflns by replacing the

_. ', tingula_lty at the edge of the sheet with a core representing the initial roll-up of the

--:. sheet edge (Figure 5-5). The placement of the tip roll-up core for the two-dimensional

n_._ , wake follows the result presented by Karman of IGtden's analysis for roll-wing von

: i

up by a par_bolically loaded vortex sheet. For the roll-up of agisyLumetric vortex

--=:_ sheets, due to the lack of a similarity solution, the a much simpler tip core is used.

The details of the initial conditions are described in Appendix B. Such models for the

initial condition of the vortex sheet is ncceet_ry for a realistic numerical app_ximation

of the flow when using vortex panels to model the vortex shee_

The core is a model for a tightly rolled-up section of vortex sheet, the core center

representing the center of the apiral. By knowing the position of the center of rolinp,

the inner_m¢_t resolvable section of the vortex sheet in the spiral can be handled more _ a

accurately. The spline representing the vortex sheet is derived from the panel centers,

tlie location of the edge of the l_st panel, corresponding to the end of the sheet and

the inner-mo_t re.livable section t_f the spiral, is uncertain. (See Figure 5_6,) Sinc_

the roll-up should be in the form of an exponential spiral with the core at its center,

the orientation of the _st panel may be used to blend the veeolved section of the

spira! with the core. It aL_ lX_sib|_ to truncate inneromost _¢¢tion of the reeolvable

vortex sheet and dump the circulation, momentum, and energy of the truncated _tion

into the core. (Although both methods may be treed concurrently, core Jumping was

_. not used in any of the results p_._ented below.) Core dumping is attractive for

numerical reasons s_nce the s_r_ of the pane?s cen I-_ kept relatively sm_]l even as the
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sheet stretc]w_ without being limited by compu_r memory slT_. As vorticity is

dumped into the cor_, the c_rv_tlon of ci_ulition, momentum and kinetic eflergy

determln_ the strength, _ltton, and siT_ of the core _pc_t]vely.

_" ft.2, Reetd_s of the Roll-Up CalculationsIlK

Tile numerical scheme gc_cribed above has been applied to simulate the roll-.up of

!_ twodJmensional and axisymmetrtc vortex shee_s. All _ll-up stmul_tJoJz_ were inJtisted

with v model representing a small amount of roll-up already in place at the edge of

_ the vortex sheet.

--- .

_ 5.2.1. Two_Dimenslonal Roll-Up

_it_ The roll-up of a two-dimensional vortex sheet trailed by a flat, elllpticaUy loaded

--_-, wing _ the classical test case for numerical vortex sheet methods. I_ o_der to

-_ simulate the geometry of the sheet, the Teefftz plane method, originally introduced to

_ roll-up studies by W_twater [12], is used. ._ach c_ve_-section of the wake vortex sheet

is treated as an unsteady two-dimensional vortex sheet. Thus, as described _bove, the

-_ sheet is repli_.d by a series of equal width flat panel of constant vorticity. Unlike

the axisymmetric flow system, this two-dimensional tell-up requires the program toi

aCCount for the mirror-image contribution acrc_ the plane of symmetry. The time

i_tegration cycle is _gun with a flat sheet at y - 0 and a tip core pa_ition,xt at the

_enter of Kaden's spiral for roll-up of the outer 5% of the vortex sheet. There are 76

panels da_ribing the sheet initially, the _umber increasing as the sheet stretches; the

size of the panel is kept constant. In this simulation, roll-up of the sheet has been

allowed to take place without c_re dumping to demonstrate th_ robustnets of the

model. The panel widths have been kept constant.

Figure .%7 shows the geometry of the sheet after every ten time integration cyle_,

each cycle rep_sen_ing a nondimensional elapsed time'of the the of 0.005 . "/'he

initial location of the roll-up core is given by a small ci_le0 p_rtly hidden by the

inner regioos of the spirals, at alT_ut z - 0.97 . Although the inner region of the

E _pir_l is obscured by the overlapping, smooth rollup of the outer region c_r_ be seen.

_The t[_e _s rtont_ens_onal[_.e_ by _he t[_e scale, t' - rO/_
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The core representing the inner region of the spiral initially moves inward and

upward n, colu_rve impub_. Aa the core app_'oaches the eentm|d of vorticRy for the

complete vortex systera, x_ - 0.7854, the uppsrward movement _ and begin

moving downward while asymptotically approaching Xo.

l_igure 5-8 shows the _mount of circulation contained by the sheet outboard of a

given _nel. The horJ_/_ttal axis gives the panel /rider, and since the panels are

constant in width, this is equ_Talant to the arc length along the shee_. Values of

circulation are negative since toe lmneW t_ were defined to be positive. The y-

intercept shows tie total simulation of the system which has been defined to be L0 .

The first ©urve, the stat't_p distribution, is elliptical and the strength of the tip core

appears as the jump from the end of the curve to I" - O. The lessening of the

gradient indieate_ the stretching of It section of the sheet. Stretching is extreme in the

hmsr-mcet region of the spiral as indicated by t_e nearly horizontal inclination of the

curve while the outer portion is stUl relatively m_affected by the roUup. Slight

bumps in the curves therefore mhows regions of differential stre_hing as_ciated with

the rolinp.

The roll-up of a vortex sheet must conserve circulation and momentum. The total

circulation computed for the numerical model of the vortex sheet as it deforw_ with

time shows a negligible fluctuation of about Dl% per time ,_tep from the ©xpected

value of 1.00 . The program maintained this value to better than 0.001% a_uracy,

representing only .as fluctuations du_ to numeric.at round-off errors. Calculated

cantroid of vorticity for a smooth elliptical distribution is 0.7854 . For the numerical

model of the initial condition twed, the centmid of _ortiCtty was found to be 0.7925 .

D_ring the subsquent steps in time, the centroid value was found to d_rease by le_

than 0.05% per time integration cycle, or time step. The steady decrease in c_ntroid

appears to be connected with the additional panels used to represent the stretching of

the vortex sheet.

Betz [10] has shown that the circuSation within the spiral, measured from the center

of the spiral, should approach a constant distribution. Figure 5-9 shows the

distribution of circulation versus the distance from the position of the roll°up core for

each time step plotted in Figures _7 and 5-8 along with a plot of the approximate

solution found by Bet_ F_ch curve reprt_e_ts the sheet for increments of 0.100 in
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nondime_ioutlt time. Since each cycle of time tntegr_ttcn covers 0,O05 in

nondlmeutional time, each ounce represents the _ult of 20 time, Itel_. ,c_me of the

deviation f:mm Beth's r_ult can _oe explained by the fa_ tha_ L_etz did not u_ Knden's

Jdmilarity _intion but plsced his hyl_othetlcal roll.up at _he end of the sheet. Figure

_-JO dtows the blow-up of the region covered by the spiral. In _th flguroK, the are¢

over which che circulation is integr-tod iocreascs to the right of the plot; thus each

curve will converg_ on che Wt_l circulation of the mhce_, which in this case is unity,

toward the _ight of the plot. Although l_e_'s solution shows the general trends, the

_uraerical solution exl_ibits a tendency toward higher roncentratlon of circulation inside

the roll-up spiral.

Figure 5o_1 shows the geometry of the sheet at elapsed time of 1.00 . The spiral

planform gener_'Jy agrees with those generated by ocher inve_tigatols, the weeknea_ in

the flat paual method is apparent in t:_e tightly wound spiral. As the spiral tightens

near che center, the number of panels become insufficient to adequately resolve the

spiral. In this case, there are approximately 11 panels de_ribing the inner-mc_t turn

of the spiral. Due to the ¢mbigu[ty in the radial position caused by spanning f_t

l_unels ecro_s a tight curve, the end of the sheet has crossed over several turns of the

spiral (l:igurc 5-12). When this happens, the closed section of the vortex shee_, stops

stretching and become8 roughly equivalent to a core of vorticity.

While sheet crossing represents a violation of the physical nature of vortex sheet, t_',e

sin_u]ation can become unrealistic much eerlier. When the penels forming one turn of

the spiral roughly overlap with the panels forming an adjacent turn, the geometry of

the section have been found to stabflL_e in this comfiguration, Since the phenomenon is

produced by the fiat geometry of the pane_, this behavior is uncharacteristic of a

smooch vortex sheet, For this re_n, the width of the panels mus_ be reduced in

order to a_c.uxately resolve the inner _egions of the spiral.

_,2,2, Roll-Up Produced b_ au Impulsive Movement by a Dt_k

The problem ttudied by Taylor [27] is demonstarted by performing the allipttc_!ly

loaded wing wake with azisymmetric vortex band& The motion of the disk is

modelled by a flat azisymmetric vortex sheet. A rough approzimation of the initial

ro_-up o£ the tip is used (sea Appendix B). The a_i_ymroetric tip core, unlike the
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two dimei_sional core, li_'_ a Jelf_induced velocity which mvst be determined using the

conservation of energy, The sub_iuent roll,.np of the vortex sliest int<_ a vortex ring

proceeds smoothly ,- shown in the ftgorcs. A! with the wing v,'ake, the simulation

begins with 80 panels with the outer 1.25% of the vortex sheet tranfforn_ed into the

initial roll-up core with no sut_qtlent core dumpi_Jg_

Figure 5-13 shows the roll-up of a vortex shaet produced by an impulsive m_tlon of

a flat dJ_k. There are 10 plots, each representing elsi_ed tires of .05, and the initial

configuration, with the tip core shown as a small circle, shown in this plot. The

roUup is similar to the wing wake loli_up with one important difference, the spiral

translation is augmented by the _eif-induced velocity. The spiral is behaving

essentially as a ring vortex. Figure 5-14 shows the circulation distribution

corresponding to the geometries above. The gap between the first curve, showing the

initial circulation distribution, and the rest of the curves is due to the decrease in

panel size and a proportional increase in the number of lxmeis imposed by the program

in the first few time stel_- This is porformed when the distance between the core

and the end of the sheet is reduced below defined lin_ite. Othe'wise, all of the

features of the wing wake case can be observed.

Centroid of vorticty for an azisynunetric vortex sheet is the radius of a vortex ring

with the same impulse. The calculatod value for the oentroid of a continuous vortex

sheet is xo - 0.8165; the total circulation should be 1. The panel-method introduces a

error in the centroid to give the computed value of 0,882 for the initial vortex sheet.

However, the important criteria for the accuracy of the numerical simulation is the

invarie_ace of these values as the ro.l-up proceed& The total circulation WaS found to

fluctuate by less than 0,001_o while the centroid of vorticity was maintained to about

0.05% change per time step where each time step is equal to elapsed time of 0.005 .

In addition, if the roll-up simulation is perfectly accurate, Beta hypothesized that the

circulation integrated away fxom the center of rolloup should approach a final

distribution. A lost of the hypothesis is shown by Figure 5-15. The circulation

distribution in the spiral, which is the region toward the left, apfe.ars to converge on

a relatively steep slot_e which refaiccts a high concentration of vorticity. This feature

i-_ more apparent here than in the two-dimensional _ because of the faSter rate of

roll.-up. Figure 5`16 shows the blowoup of the circulation distribution_ in the region

c_vered by the apira!.
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Ib
_. Figure 5,-17 shows in detail the sheet geometry at elaFed time of 0_._) As

_ comlmred to the wing wake l_llrup at the same Jtage of roll-up, the lpiral_ ere lo¢_r

but more tttrns of the spirals are pr_ment. 'I]_e invarisnt tip roll..up core is shown

' with ite ralculetted c_tional radltm whicll, as ran be obmerved, lit very jmlall; it

represents the tip 1.25% of the initial vortex sheet. Due to the higher _te of inward

motion in the spiral, the inner-most turn has _lready ranched the point where the -)

f' " imne]s are inade,_uute to resolve the curwture and s sheet etX_lng has taken place.
i: 5.2.3. Roll-Up of a Helicopter Wake

_' [ The evolution of the wake produced by a single rotation of a helicopter rotor was

_'[ simulated by imposing an approximate rotor loading

"I r(x) = rox' l - (5.1)

_._] on the initially flat axisymmetric vortex sheet. This load distribution is shown

_, graphically in Figure 5-19. The downwash profile induced by vortex Immds,without a
_' i tip roll-up model, for this distribution is shown in Figure 5-20. The numerical x_uit

for the velocity at the center of the disk agrees wed with the theory, which comes

i ! out to be 0.3927if the contributionsof allof the infi_itesmalcircularlinevortices

i areintagraredanalytically.

i Figure 5-21 shows the roll-up simulating the evolution of a wake due to one

_ rotation of the helicopter rotor at increments of 0.05 in nondimensional time. The tip !,
= Core contains the ci_ulation of the outer 1,25% of the flat vortex sheet and each time

step reprcsents nondirnensional elapsed time of 0,005 . A prominent feature of the

vortex sheet geometry is the stationary point near the midpoint on the sheet, qt_xis: feature was also found in a similar investigation by $ohn Kantelis [26] using a

_ collection of vortex rings to represent the vortex sheet. It is noticed that the

mteepcning of the ciwuintion curve, indicating a concentration of vorticity which should

evcl_tually lead to another roLl-up of the vortex shee_, only develops at the center of

the axi_syrnmetric vortex sheet. Thus, although the vortex sheet contains regions with

- vorti_Ity of oplx_Site sigr_s, the sheet dues not al)I_ to roll-up intt_ two eelX_rate

vortex rings The circulation plot (Figure 5-22) shows a aigl_ificant decay of the

tgough in the circulation curve during the first ten or *o time steps. This is a

numerics1 error due the tns_uracy introduced by the linrar interpolation of circulation

treed in the recon.struction of the vortex sheet after each time atop.
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Tits vsUdity of the mimulation is indic-_d by the inva_isnce of total circulation.

equal to zero, and the impulse of the vortex Id_L Total circulation and total /reprise

are f[,m_d $o be con_rv_d to Within 0.001% and .002_% _pec_ively during each time

tutegratloJt cycle, In addition, the circulation distribution away from the n311-up Center

/J exelTected m converge On a final curve. Figure 523 shows the distribution of

circulation integra?_d away from the cen_er of the _oll-up for each xime step in

Figures 52! and 5_22 overlapl_d to show the comparative deviations, The blow-up of

the region covered by the spiral is shown in Figure 524.

The geome,ry of the vortex sheet at elspaed thus of 0_,_0 Is shown /n Fi_tre 525.

The panel which rep_,ents the minimum in the circulation distribution curve (Figure

522) has been circled to show the extent of the negative vor_icity in the mlloup. Tip

roll-up Is much faster than the two previous cases since there is more circulation

concentratedin the tip region. The blow-up, Figure 526. sho_ extensive sheet c_ing

for the inner-most turns of the spiral, Tip core. which appears as a dot in the

middle of the spiral, is shown with its croeHectlonel radius in w,ale.

I 5.2.4. Kelvin-H©lmhultz InatabiUt_

The instability, which is the di_retized from of the _nderlylng Kelvln-Hehnholtz

Instability. becomes evident under special condition& A wake vortex sheet which is

very fiuely discretized reached the geometry shown in Figure _27 after ten time staI_

During each time step. the panels were allowed to move the maximum of 0.1 times

the panel width. The circle on the right represents the location of Keden's core model.

If the sheet is magnified in the vertical direction, the development of Kelvin-

Hclmholtz-typa iusmbillty becomes visible (Figure 5_28). Further maginification shows

the waves to have a parlod of ll panels and the sc_le_ to be within the 8 digit

accuracy of the compeller.

The deanping of Kelvin-Helmholt_ Instability in the numeric,at simulation is in the

form oi_ low-pass filtering the wavinebs in the vortex sheet, This filtering occurs as

the panels span acrccs crc_t_ and troughs of short wavelength wav¢_ Due to the

stretching of the sheet, the panels which describe the geometry of the vortex sheet

following a time integration cycle wjl! be slightly displaced from the previous p_ne_

The amount of this displacement determines the amount of filtering which takes place.
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l_zis is becau_- wavin_ in the displacement of a jheet formed by panels can not be

rmolved unl¢_ the the next net of panels overlap the dkpinced panela For thl_

ra_ov., the tust_bility appeam wJlen the amount of displacement, llml_:d by the

amount of time elap_A In one cycle, is kep1. small This is what happened in Figure

5-28.

The filtering effect can al_o be nuppr_ed by continuously increasing the eI_tial

rc_olution of ¢h¢ panel_m¢thed. An example of this numerical behavior is shown in

Figure 5-29. The initial conditions on the _eet and the time integration ¢yclea arc

identical to the dh,k wake roll-up case presented earlier. To Plu_trate the filtering

effect, the size of the panels were coustantly rcduccd to about one half that of the

panel used for Figu_ 5-13. This is accomplished by specifying GFAC - 2 instead of

GFAC - L" s_e Appendix C. _is effectively suppressed the furring and the small

instabilities are able to grow more freely. As the roll-up proceeds, the secondary rollo

up spirals ere amalgamated into the tip roU_up spiral and the secondary spirals arc

also stretched as they spiral into the tip roll-up spiral. This behavior can be obasrved

directly above the main spiral where stretchh_g has deformed the secondary spiral,

Plot of the circulation distribution, Figure 5-30, show_ jumps in circu!ation which

corr_ponding to each eecondalN roll-up. The cin-ula_ion distribution in this plot was

initially e11iptical llke these in Figure 5-14. _cept for the existence of the secondary

roll-up, the simulation proceeded no differently than the previous case. The computer

program mainlined the invariance of circulation and momentum with the s_me degree

of accuracy as before. DJstributions of circulation taken from the center of the main

roU-up spiral is shown in Figure 5-31. Figure 5-32 shows the blow-up of the region

covered by the main roU-up spira_ They arc no different from the previous results

except for the effecte of eccondary roll-up in the circulation distribution.

]
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1. tliven hfitlal C_fl£mation: (x i J, 1)xlj), _+,_

(hlculat_ Velocity: v I j fxn(x_ j,

- Dx _j). _.
V;.-ij

z:.,j j/
2, Txansl_tioJ_ to tim Intermediate Position: _ I

'3. Approximate Iutermediat_ Panel lacl(natioa: "lO/A'|

E"#O.,-i,,,"* i.

...j,+,
4, Approximate latermediate laanel Width:

I l)x_j+Val - V_ I x_.+:tJ+Va_ xl-,.3,j._.vaL _."10/

vlJ+V_ - fxa(xij+V_, DxIj+V,).

6. CombineVelocities,

Translation to the F_al P_ition: O_ /"
xij+l - xlj + v_tc At. .,_ #

Figure 5-2: The Flrst,-OrdcrRunleoKUtta_hcm©

!
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1, Oh_tn advent lmiuts _ m
(l_tral_)|ate at the e)ltl._), it}

L'I

are obtained _rom fl,c

¢a_gents to the ar_
(i.,Li,i+l)an_(i_,t,l,i,_,2).

3. A parabola is fittc.d
t_tween i and i+l ", i

: i

_. Figure $*3: The RcaOnstruction of the Vortex Sh_t

J

I

I
Subroutine "RUNGEI" giv¢_ the | /

translated panel e_nters, ztJ+l. *

Subroutine "RIIDISK" _pl_n_the '_

spatioJ2y equidistant poi_s, x_+V_, 1, _ ._ .
along _he _pli_e.

: Subroufiu¢ "PANEL_" spans point_

z__¥_j ��„x_+_j+ _ with panel i.

Figure 5,,,4: The Redi_ret_izatioa of the Vortex Sheet

j
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}_lual widthlJ_noldi.scret?tat|(_n
of a flat wake Vortex _hect, "' "P-"_ ; : ; ; J P •

The rcm_dnlng_hect is
stretched(rcdJ.'_rctizod) 0
_'J the eAl_]c_ u_Idgrthe core,

•

Figure 5-5: hfithd Co_figu_ation of th_Vot_x Sheet and RolL-Up

Core is

Modified
to Con._crvc
Con's'oldau,:_
Energy

Unc_rtalnty
•.¢ Sheet _nd _,_ _
Geometry

Spir_is
F_

Figure 5-6: The Core Dumping Approach
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Figure 5-15: Distributions of Circulation Surrounding the RoLl-Up Core
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Y Figure 5-17. "/_e Sheet Geometry: T - 0.55
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Figur© 5-20: Downw_h Prof£1¢: Vortex B_ds with the Above Loading

i D

00000001-TSF05



69



70

8
,,+,
o

0.200 0.400 0.600 0.800 1.00
RADIUS

Figure 5-:23: DisttJbutioa of Circulation Surrounding the Roll-Up Cote

_. T - 0.00

O000000]-TSF07



., .. 0000000_-



72

1.

10 T+"II_1_+

g..,

• r- • • • • T , --- i

0,000E+00 0.125 0.250 0,375 0.500 0,625 0,750 0.675 1,00
RADIUS

Pigurc 5-27: Gcomctry of the W_kc Vor_x Sheet
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Figure 5-28: Repcat_ MagnJfic_ttionof a Section of Vortex Sheet
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Figure 5-29: Rc_at of Fig. 5_13 with Finer Paneling: 1' .. 0,350
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Figure 5,-30: Ti_c Corresl.onding Circulation DJ.stributioyx

O0000001-TSFll



i:_::_ "" " 00000001-TSF12



76

Chapter 6

Conclusim

The behavior of vortex sh¢cte wlth axisymn_etric geometry prcscnte the next frontier

in the study of vortical flows. Axisymmettis flow lies between _he relatively well

undersV._l two-dimensional flows and the complex three.dimensional flows, For this

reason, unders_nding of axL_ymr_etric vor_x sheets is u_ful before _omplet_ly th_'_¢..

dimensional vortex sheet_ can be modelled. Due to the complexity imposed by the

increase in number of variable as the number cf dimensions are increased, three-

dimensional models using discrete vortices or dipoles are more de_qirable than panel

methods. However, the use of simpler models would be meaningless unless the

a_curacy of the models can be determined. For rids reason, the axisymmetrie panel

! method was developad as a higher-oder model to test the accuracy of simpler

axisymmetric vm_ex model_

To accurately formulate the behavior of an axisymmetri¢ vortex panel, a flat strip of

a uniform two_dimensional vortex sheet, called the vortex panel, was first studied.

Th_ calculations of the velocity field show that an assemblage of l_neL_ will mutually

induce motions which are more representative of a vortex aheet than an assemblage of

point vorti,'_s. Even when rcpr,_lucing a vortex sheet with non-uniform vo_ticity and ;'_

curved geometry, the panel method performs no worse than the discrete vortex method.

The eimple geometry of the vortex panel allows a straightforward derivation of a

matched _y_ptotJ¢ solution for the flow _ndu_ by an uisymmetris ¢quiwlent ot

the vortex panel, the vortex bend, Vortex ban& caw be assembled to accurately

reprint an axisymmetrlc vortex sheet, limited by the geometric inaccuracy in

• 3e_nting a smooth curve using straight line _gmen_ end, at l¢o_t for this study,

the no_osmoothness of the vorticity distribution. Both of the_ wcakn_ arc problems

of spatial resointion which can be aUevia_.d by incre_ing the number of elements,

Thu_, l_nel-meth_l can be u.'_! to accurately simulate the evolution of an

axisymn_ctricvortexsheet.

t
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'J'iiu v{nl_x _ll¢'el d_VJlalni[:,_ calculation ill nil initial c4,11ditil_|l pr(il)ilm, (hie iniJ_ntaut

rr_/_llit. |laN I)_}l lilt. l_l_:il]'ac;9 l_|" tile ]_ll'le, l.l}i_thlal ill r_l)l'{klilCJllj_ tile JJllw Jlldll_fAI ll_

A fJ.t V(U't¢X /_lleet which J_ tile Jllilial Simile Ill' tile _/(l|rle_ flll_'_t ill jn_il|_ plrlil)lclJlt tJi'

W(_l _ry flit IIAC Ae(:lllilte )rCJ))'(_lllliJtlo;I Of tlIC _Jl)_l| flow _Ji_J(l, it _l il_) UNC_'UI

for th© numeri_ll simulatio;_ of tlJe _7{',Juduccd def'oxlul_tio_ o£ the, vor_ca shc_t.

The _E,.lnduccd v_h_clty of' curved vortlc¢_ lmvc inhibited the study 0£ the dynamto_

of _xl_ymmct_g vogtex sheets, lly ualag dr© n_tkod of matc|u_l asympt_t_c ©xpansion.

th© s_lf,4ndut_ v©l_lW of an _xi_ymmet_l_ vo_ex p_n©l _onnistent xvtO_ Ox©ktn©'dc

©_ergy of a scctiol_ of an nxisymmctricvortex slicer w_ found. The axisymmetdc

]pancl-xn¢thod was u_d to sinxu]ate the Eoll.o_,p_uscd by th¢ Jmpulsiv¢ _notibn of a

circular disk m_d th© roll-up of n vortex sJxe©twith a ]o_ding which aplmsximat_ that

of _ helicopter rotor. In both c_,s_, smooth rolbup v,as ol_erwd _ad both total

gi_cuIatioa a_d impuhe _ve_e¢_m_vcd. By ¢cl_i_g the h'_w_-l_._ filtering inherent

the numeric! n_©thod, secondary rolbup due to K¢)vin-,ll¢_n_hol_z Instability _a _¢

observed, TILLsfeature for an axisymraetric vortex _ett was simulate! numcricaUy

using tl_c _nel-method de_crilxd above.
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• } Appendix
-_Lqh:

.!_1 The following pag_ are divided into three l_¢tiol_%

! 1) The ILstings of the FORTRAN rout|nes for comFztJng the velocity induced
by varlou_ wlrtex ¢lement_

2) Tile description of the rmmeri¢_l model of the initial state of the vortex
sheet prior to the numerical roll-up simulation and the FORTRAN l_ting.

3) The listing of the FORTRAN program for the numerical simulation of vortex
6b_et dynami_.

4) The inputs for the vortex ah_t dynamic_ B'mmlatiou program ugcd to
generate the figur_ within the text.

! All of the following program listings have been written in FORTRAN 77
Version 3.0 for the Digital Iktuipment Corporation VAX-750 computer.

L.
d
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Appendix A

The Vortex-Velocity Routines

The velocity in:._cml by a vortex element is colculated u_ing a Cartesian coordinate

system, (X,Y)0 centerc _, on the vort*v inducing the flow. Th_ panel's inclination

respect to the coordinate syvtem is exprea,_.d by (DX,DY), where DY/DX equals tile

tangent of the angle between the l_nel panel and the x-axLe. (W) is the half-width

of the panel and (G) is the vortisity along the panel. The velocity is obtained as

orthogonal components, (u,v).

The names of the twoMime_ionai velocity routines:
VEL2D : The Vortex Panel Routine
VEL2DF: The Point Vortex Routine

The axisymmetric vortex routines differ from the two-dimensional vortex t_utines due

to the inclusion of the radius of the vortex element, R. The composite solution, Vcomp,
for the velocity induced by a vortex band is

Vcomp - Via + Vou _ - V_o,

where the routine

VELIN computes the inner-solution, Vtn :_
VELOUT computes the outer-solution, Vou t
VFLIO cemputes the intermediate_3olution, Vto.

(Note: The Vou t alone gives the velocity induced by a simple vortex ring.)

_k
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F_' SUBROUTIN_V_L2D (BIN. VIN)

* THIS fiUBH(_II'INECALCUlaTESTHE VEI.OCITYFIELD InDucED
$ _Y A FLAT VORI£X STRIP OF e
* WlUTIt : _
* STRENGTH : G •
e INCLINATION : ( DX, DY ) I
* AT POSITION (X, Y) RELATIVETO THESTRIP MIDPOINT J
• (DIJIAttYVARIABLE:RADIUS : R)
•O*@e_Oe_IeOJeO*_*OOI_qO**O•eOae_Q*e_*mq•eODDQJOO_**I•DOO•OQIOJO*IOOB•OIQI_*O*

C RELATIVE COORDINATESANDQUAORATIC_'_OSITIONVARIABLES
C

C_ /V_LO/ R. X, Y, DX. DY. W, G
P! " 2*ASIN(,.)
COST" DX / SDRT(DX*e2+DY*D2)
SINT - DY / SDRT(DX*D2+DY**2)
Q5 - (X_*2 + Y**2)/Wo*2
Q4 - (YeCOST- XeSINT)/W
Q3 - (XeCOST+ YeS|NT)/_N
Q2 - QS- 2.Q3 + 1.
QI - Q5 + 2.Q3 + 1.

tellliillOOSttl_li•$11tOllltlllltllttlllltlltOltOOilllllttlllillilleltll_ltllll

CHECKFORSINGULARCONDITION
_=-"_- IF (Q4.EQ.e) THEN
_--' ATN - ¢,e

GOTO 740
END IF

ATN - ATAN((1..-_,_3)/Q4)+ATAN((1..t.Q3)/Q4)
_: ?4e CONTINUE

i--., IF ((Q1.EQ.e).OR.(Q2.EQ.B)) THENUIN " e
VIN -
GO TO 75e

ENDIF
••I•llll•_l•I•llllltilllillllll•ll•lltllllClll_ll_illlllll_l•ll*ll•llllI•l•

C PERTURBEDVORTEXSTRIP FORMULA
U1 "=SINTeLOG(D2/Qt)+2 eCOST•ATN
Vl '_OST=LOG(Q2/Q1 )-2.=SINTeATN
gIN *-=G / 4./ PI = Ut
VIN - G / 4,/ PI _ Vl

75e RETURN
END

i °
L
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L c._i3ROUTINE VEJ_DF (UXN, VIN)
mam*_m_ Jo_mo_li*Iooom*o_oJoali*o***_*osm*o**oon*l J_mlo_o***_ JI_O*_o$oomm j

_ : q " THIS SURROUTINECALCULATESTHE VELOCITY FIELD XNOLIC[r'O ,-

]I _ BY A FLAT VORTEX STRIP OF' *
:_/f_'; ! • WIDTH : 2W, _' STRENGIH : O *

• INCLINATION : ( DX, DY ) *• AT POSITION (X. Y) RELATIVE TO THE STRIP MIDI_INT _,

i , (o_ ,_I^.LER_xusR) •
._..: . _ **_*e*_ip_*_8**qp_pIq_u_p_up_8_o_B_*_I_8_me_*_Q_**_o_**_**

i_. ]i CC RELATIVE COORDINATES AND OUN)RATIC"PO$1TIC'N VARIAEILE_;

i i COMMON/VELO/ R. X, Y, DX, DY. W. G
P| . 3.141S9;_6r_4

Q,_ m SQRT(X**2, + Y**2.)

i" IF (QS.EQ.B) GO TO 750

COST _ X / QFI

•! SlflT ',, Y / q5

! IleeQghat I*qqda*o******O IIPOOeHP 80OleOeOO00 foe O00eooIoeo OQ_ei oo_,e,eo,_****_, oe_o_ooo

, U1 _ SINT/Q5
• I VI ,mCOST/Q5

_::_"I UIN '_G/2 /PI • UI
VIN m G/2./PI • V1

_i 750 RETURNEND

i=:_

i kL_:!
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SUBROUTINE VELIN (UXN, VIN)
Oogm*o***olma_oao*oe_QIo_oem*l*I_B**mJoIloellomnJ_ImoIBoa*_m**oIo_omJoomom_8_e*

J THIS 5UBRDUI"]NE CALCULATES_HE |NNE_ SOLUTION *
I OF' THE VELOCITY FIELD INDLIC_ BY AXISYIAdETRICALLY m
e PERTURBING A FLAT VORTEX s'rRxP OF *
• WIDTH : 2W *

STRENGTh1 : Q •

• INCLINATXOR : ( DX, BY ) •
• RN)XU_ : R *

• AT POSXTION (X, Y) RELATIVE TO THE STRIP MIDPOINT *
0

THE DERIVATIVES OF THE STREAM.FUNCTION HAS BEEN =
• DIVIDER INTO TWO PARTS: =
• 1 - RECTILXNEAR SOLUTION =
• 2 -- F|RST ORDERPART_CULARSOLUT|ON *
_l•oeoem*ele•e*eooeeee*i*eeololeemJeweee_llooleeeo•e*e*d_eeewe••eeloooee*ee****

C RELATIVE C_)RDXNATKS ANDQUADRAI'IC-PO$|TIONVAR|ABLES
C

C(_AVON/VELO/ R, X, Y, OK, BY, W, G
P! - 3.141592654

COST - DX / SORT(DX•*2.+DY**2.)
SENT _ OY / SO_T(BXe*2.eOYee2.)
QS " (X**2. + Y**2.)/W**2.
Q4 - (Y,COST - XeSINT)/W
_3 _ (X,COST + YeSINT)/W
Q2 " Q5 - 2,*Q3 _ 1,
Q1 _ O5 + 2.=Q3 + 1.

•llltl*l_•llllil_•lllll•llltlll••ll*llll•llll*l••lltlllll•lllll_l•*lllDlllllltl

CHECK FOR SINGULARCONDIT[ON
IF (Q4,EQ,e) THEN

ATN - 0.0
6o TO74e

END IF
••e•e*eeo•le=eeee*e*e**eeeI•••ee**eee*ee*e•*••eoeeoeee•*e_••ee*e•=ee•e*e**lee•*

ATN - ATAN((t.-Q3)/Q4)+ATAN((1.+Q3)/Q4)
740 CONTINUE

•oI**••eoo•*eeolo•eee•*oo_•eeoe_***e_o••oe•eo_*_•**_**eee_o*•*_•_*u*_•o•leeee

C PERTURBEOVORTEX STRIP FOflMULA

U1 _-SINTeLOG(Q2/QI)+2.*COST*ATN
Vt =_COST*LOG(Q2/O1)-2.*SINT=ATN
u2- (X/_./R) * U_
V2 - (X/2./R) • Vl

• + .5*W/R e(LOG(Q2*Q1)
• --Q3*LOG(Q2/Q1)
• +2.*Q4*ATN
• -4.)

UIN =,..G / 4. / PI * (U1 + U2)
VIN - G / 4. / P! • (Vl + V2)

75e RETURN
END

-- 1
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-_: SU_HOUT|NE VEL(_JT (_). ¥0) I ELLIPTIC ]NTEGHAL,_ t
omJoo_oolmoDm_mlmim_IomJ_Ioio*mmi_mi*_A_QJ*ooOiomlloQiioi_m_oe,o_m,!momm_oi4

" tHIS 5UDR(XJT]NEC_LCULATE_ THE VELOCZTY FXELD
* INDUCED BY A VORTEX R|NGWItICH _ USED A_ THL •
* (XJTER VEL(X:XIYSDLUTION FOffAVCflTEK BANUOF •
o WXDTH : 2W e
* STRE _TH : "

* INCLINATXOR : (DX, DY) *
• RADXU_ : R •
* AT POSITION (X, Y) RELATIVE TO THE BANDMIDPOINT •

P.OMM(O/VELO/ R, X, Y. DX, DY, W, e
REAL M1. I-/_q_ KO, KI, K2, KLO, KL1, KL2, K, KP

VO_O,_
p! m 3,141592654

oooo_***ooo*ooooogo_oeo_*e**eeeoeeoootoeooeooeooemo_oooeeetoooooeo,,****_****o_

RIm Si_T(X*e2.+Yee2.)
R2 _ SQ_T((X+2.*R)e*2.+_*e2o)
LAM = (R2-_l)/(RI+R2)
M1 _ 1. _ LAM.*2.

IF (R1.EQ.O) GO TO 73_
IF (LAM.EQ,e) GO TO 730

i DXR1 - X/R1
_: DYR1 - Y/R1

DXR2 - (X+2,eR)/R2
i DYR2 - Y/R2

DXL - (DXR2-DXR1)/(R2+R1) - LAM/(R2+R1)*(DXRI+gXR2)
DYL - (DYR2-DYR1)/(R2+R1) - LAM/(R2+RI)*(DYRI+DYR2)
K_ _ 1.3862944
K1 m .1119723 • MI
[1 " .4630151 • M1
K2 m ._725296 * Ml,e2.
£2 - .1_77_12 * Mlee2.
KLOm .5
KL1 - .1213478 e MI
EL1 - .2452727 * MI
KL2 m .D£_8729 * Mlee2.
EL2 - ._412496 * M1.o2

K m K@ �K_- (KLO 4" KL1 + KL2)*LOG(M1)
E" 1. + E1 + E2 - (EL1 + EL2)*LOG(MI)
KP. E/L_M/MI-K/ L_M -,
EPº(E - K) / L_ ,4
DXR - DXR1 + DXR2
DYR - DYR1 + DYR2
RR m R1 + R2

UO - G*W/PI/(R+X) • (DYR*(K-E)+RR*(KP-EP)eDYL)
VO--_*W/P_/(R+X)• (DXe.(K-E)+RR.(KP-EP).DXL)

730 RETURN
END
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Appendix B

The Initial Conditions for l:toll-Up Simulations

The velocity field induced by a distribution of pnnc]s alone prcclude_ a smt_th roll,,

up unla_ th_ singularity at tile edge of the vortex sheet is corro_tly modelled. The

vorticity singularity at the edge of a vortex sheet is exlr,ctcd to prc_luc¢ an

infJnltesmal roll-up in an infinitesmal amount of time. Such a roll.-up xeltcv¢_ the

singular velocity di_ontinuity which would otherwise exist at the edge of the vortex

sheet.

]'he rollHup simulatiol_ uses an init_, _afiguration which rcprem_ut,_a vortex sh_t

with a model for an arbitrary amount of roll-up at the edge of the sheet, The

initially rolled-up _ction of the vortex sheet is replaced by a circular core of vortici1:y,

t:or the rotl_up of the wake vor_x sheet shed by an elliptically l_d_l _ing, Kaf_¢n's

similarity _lution for roll-up of parabolic loading is used to approximate tile po6ition

of the c_nter of the rolloup spiral, The positiou of the center of the roll-.up spiral is

given in Reference [9], Figure 1_1 show_ Kaden'._ solution for the roll-up of the outer

X0 segment oi" the vortexsheet.

no - 0_7 Xo "_

bo - 0.88 X o

A significant foature of Kaden's solution is the stretching of the l_:mainder of the

sheet up to the point diiectly under the center of the spiral, as noted by the

dispJacement of point A on the sheet to point A'. This displacement r_m._.rve._the

overall _ntroid of vorticity since the c_nter of the spiral, is I¢_ tJ,an the centroid for

the outer X0 _tion of the flat voxtex ahcct. The numerit_l model rvplac_ the

rolled_.up Xo sc_tion with a core at the center and Itn_ariy stretches the remaining flat

vortex sheet so its edge would come directly under the core. The re_ulting model

raproduc¢_ the centroid of vorticity for the elliptic loading, x c - _'/4, to within 1%

accuracy.
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_ White F_a_e_L'Smcth_l is av_ll_l)le _ al_Dr(ixim_tc t,h© l_catii_t_ _ a tip t_Te fo_ t_o-

dimen_dcmal r(Lll'_JL, itN apJdtcati0u tO _n azl_ymmetrJr_ 1"oH,up _,vllI not t_mse_ve

impulse, Therefore, A vorteI xJng with tile emme impulse cud energy as tl_e outer X 0

Me_tlolt o|' the a_lt;yJllmetl'lc Vortex slteet IN used ,_ R _)re, floweret, tile vertit,lll

l_tlo_l _f the r_)l_,ttp c_re ca_ _t b¢ t_htah_ed by th_ conservatism equations. Siu¢¢

90 thcoLy ©xlsls for OI)_linhLg the vcr[Io_| J(_t_tiOJh the ratio Of d_uc4_ for K_den*s

_10ltttl0n W_ trod lo a_q)r0_lmatc the _ot_tl(m. I_t addition, shx_ ti_e core c0nsexVCS the

¢¢ntroid of rotatory, tile rcmtdnL.g shee_ wt_q not stretched for this cv_¢, Figur© }I,2

_ltow_ the _umeric_t m_lci of tile iuiti_I mJL-'4p for txl_ymmet_c vortex nhee_ whk:h

%el)r_nts n tr_mslttti_g disk,

2X X_

, 3/__
_e

--II'_R 7

where, R : the radius of the orJ_i..l _x.LsymmetrJ_ vortex sheet,

re : the radi_ of the roll-up _ore.

The ivitittllzation of the simulation of vortex she.el dynamics is performed by the

routhle INFFIA.
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Flguro IL2._ Iattlal RolloUp Model for Axisymmetrlc Vortex Sheet
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YC _ 1. '_ ._'/ • (P'LOAT(N(_(_I:) / NPANEI )
y(;, . ._ • ( f'I,OA'|'(N(:L_d"_ / NPANEI, )

DXC ,', Xc. ,_ X(flPANH.,-'W,-!_')ffI:)_ W(NI_ANI:I,' N(,'I._':)
_J 511 | -, 1, NI_ANI:i,'_f#;,OI¢I;
X( ! ) ,., D_(C • |'LOA1(I-_)/(NPANI:L. N_ORh) + DXC/_,,/(Nt'ANI-:L_-N_L_I|:)+ X(! )
W{I) ,,, [:IX(; i',_ /(NI_ANI::I, f,l_L)ffl:,_ + W(/)
lX;(I) ,,, _._(I) -, G(I, I,_) /2 /'W(X)

! [_uII1|vwly _,av,Rd fl_t _Ilek w_k4R

EL_r_ IF (ZOT,lil::.l) THI:N

WO - I.'LOAT(NCO_t_) / NPANEL
xc - S_T( t. - _.,_13. + (_J,,_)/3.)
YC _ .lib / .157 • (1. - X(,) I Thle le _ ilOeee: _qle Kgden.
GC ,, _I_(NP^_EL.--NCOfII:)
RC - 8. • XC / EXP( PX,*2 /4 *XC /S(,_'11'(2.*_ - WC*,_2) + 7./4,)

I Modal of n h_ilcopter rnt_,r woke

I ELSF, _F {ZOT.EQ,2) THEN

I _ _ F'LOAT(I_ORE) / NPANEL
l XC - $Q_I'( I .... 2.,I_//_I. + _*,2/3.) / (I. _)

I C-,C_, _-G(NPANi'.L..'I.:_.ORE)
I tic - 8. ol<C li_XP( PI+,2 //4 *R //(1.=f¢)*+_ //'_._;14_T(_*_AK',L4qC,_,O2)+7.//4.)

I END If,'

I Inltlol C,ondlllon Record

l_l'rE(l_.._) 'INII"]IAL SHF:,I_:T:K. X(]). Y(1), W(1). I_(I)'
I)0 3_ | ", 6, NPANEL
_-S(_) - SQm'O. -- G(1)..2)

30 IqR_IT,_(I_,,) X, X(|), Y(1), iVl:|), DGC[)

IA_ITE(8,*) 'CORE= NCO_E, XC, YC, GC, RC', NCOflE, XC, YC, GG, RC
WITE(8,*) ' '

NPA_"_EL_ KPANEL _ NC_I_

HETURN
F,ND
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Appendix C

The Vortex Sheet Dynamics Program

! The program TOLLCALL combines the subroutin_ listed below _o simulate the _If_

t induced motions of a vortex sheet, Input file for the program is stored as daviee #7.

The input file is in the form: (RN, NPANEL, NSTrlP, TFAC, GFAC, NCORE, ZOT); RN

is the run's idantifi_tion number, NPANEL is the number of panels initially used to

describe the vortex sheet, and NS'II_P is the number of time Integration cycles for the

run. TFAC dafincs the length of time used in the time integration, TFAC - I is

equivalent to the nondimensional time span of .005, GFAC defines the size of the

panel relative to the die.nee between the sheet and the _enter of the roll-u_ spiral. '_

It is used to insure the accur_.'y of the tip region es the dietaries between the sheet

and t_e roll-up core is diminished during the roll-up. NCORE spafifies the number of : i

paite]s describing the initial vortex sheet to be amalgamated into a tip rolloup core.

"lg_e type of r_:J-up, as determined by the selected initial r_ndition, is controlled by the

parameter ZOT.

ZOT - @. Twoodimensional rolloup of wake vortex sheet shed by an
ellipticaily loaded wing.

ZOT - 1: The roll-up of a vortex sheet simulating the formation of _'
a vortex ring by the impulsive motion of a circular disk. '_

ZOT - 2: Axtsymmetrl¢ roiloup of a ¢irrul_,r vertex sheet model
of the v/ake vortex sheet shed by a helicopt_r rotor.

The program version prc_nted here outputs two files describing the configuration of

the vortex sheet after every ten time integration cyl_cs The file containing the

geometrical data of the sheet ls in devi."_. #9 and the file containing the distribution of

vorticlty t.q in device #10. lkviee #8 holds a utility file describing the execution of

the ?_ogram.
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PROGRAMTOLLCALI

I EXECUTIVE ROUTINE FO_ ROLLUP PROGRAM

COMMOR/P_EL/ x(e:_e_), Y(e:_e_), nx(e:ee_), DY(O:ses).

Co_ORICONVl u(e:_es), v(e:_e_)
COMMON/TIME/NPNdEL. N_TEP, NTIME, TIME, TSTEP
_/O19/l/_,/D(0:505), GS(e:SC_) I GS Ii o nut _e*d
COMMON/CORE/ XC, YC, GC, RC. UC, VC I In this version, b
CO_ON /TFAC/ TFAC, _FAC
OOMMOR/zo'r/ ZOT

_ Input dutu read: a. Reference Number (|PUN)__, b. Number of panels initially in the sheet (NPANEL)
c. Mcelmum number of thee atep* in the run (NSTEP)
d. (.@85/TFAC) !e the al_e of ouch time ,tap

i :: *. (|cheat edge to tip core|/GFAC) Is the pone! width
f. Number of corn Initially dumped into the tip core

! .i g. Type of luading (ZOT)

i'_l READ(?.,) |RUN. NPANEL. NSTEP. TFAC. GFAC. NCORE. ZOTi " NINIT _ NPANEL

_ t Inlt(ullxe output file
_ WRITE(O.') 'ROLL UP PROGRAMFOR VORTEXSHEET. |CHIRO SUGIOKA 37-481'

: WRITE(8.e) 'RUt/NUMBER: ', IRUN

_ t_RITE(8,.) '$PLINING BY ROUTINE RL_]SK'
i WRITE(8.*) 'INTEGRATING TIM[ FACTOR : '. TFAC
_ WRZTE(O.*) 'GEOMETR|C WIDTH FACTOR : ', GFAC

_<_ WR;TE(8.e) 'INPUTS: (NPN_tEL. NSTEP) 'o NPANEL0 NSTEP
!. MtITE(8.*) 'ZOT FACTOr: LOADING Te_RM.AXISYMeETRIC IF >1 '. ZOT

: i! WI_ITE(8.*) ' '

I C:,_put* Initial Condition
CALL |NITIA (NCORE)

i.._: I ...... I '
' I Time Integration Loop I

.-_: DO 10 NTIME _ O. NSTEP

i CALL tM_ITF.R I Write output dutu file

=" CALL RUNGE1 I Rlnge-Kutta time Intgrattan echeme

_&t_ I CALL EULER t [ulor time Integration scheme option

DELTAL m 2. • W(2) I Punel width purulnater (0ELTAL)
I set to m data.It panel width

CALL RED_SK (X.Y.G,NPANEL.NPANEL.G/4_X.SUML.0£LTAL)
I Spllnee und dtvldol the cheer

CALL PANELER(X,Y,DX,OY,W,DG,G,NPANEL)
_:___ i t Fume the poneto

i "'_ le CO&ITINUE

I ..... _nd uf Loup ..... I
i .

CALL _|TER I Record the end raoulte

-==_ END

_= .
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_LIt]_OLITINEWHITI_R

! This pregrem recorde the resulte of toll©ell e_l fllu
I FORa_U.DAT (Oenerel eacountlng Informotlon)
I FORaOg.DAT ((;eo_etrlcal grepPlce dote)
I FOROIO.DAT (Clroulotlon grephl©e dQto)

co_/P_EI/x(e:_).y(e:se_).Dx(e:se_),nY(e:_es).

/TXME/ NPANEL. NSTEP. NTIME. T_ME. TSTEP
COMMON/G_/ _(e:_e_). Os(e:se_)
C_/CONV/ u(e:ses), v(e:ses)
COMMON/CORE/ XC. YC. GC. RC. UC. VC

WRITE(B.e) 'RESULTS FOR NT|ME. TIME. NPANEL:*. NTIME. TIME. NPANEI

IF (FLOAT(NTIME/IO),NE.FLO_T(NTIME)/I@.) GO TO RiO

V_ITE(9.e) NT|ME. flPANEL
I_]TE(I@,e) NTIME, NPANEL

I Write 9eometrlcol dote for Ioter 9rophlce.
DO 10 I _ O. NPANEL
WeXTE(9.,) X(X). Y(I). OX(]). oYEZ). W(X)

tO CONTINUE
_tlTE(9,_) XC, YC, RC

I Write ¢lrculetlon dote for Ioter grephlce.
DO 2e | _ e. NPNtEL
WRXTE(le..) I. GS(X). GEl). DQ(1)

2_ CONT|NUE
I_IITE(IO.*) GO. RC

000 RETURN
END
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_ SUBROUTINERUN_I

I This program Je a modified Ronge-Kuttn Integration mchsmc

COMMON/P_£L/ x(e:se_), y(e:_es), Dx(e:ses), DY(e:se_),

CDMMON/TIM£/ NPANEL, NSTEP, NTIME, TIME, TSTEP
r_W_ON/CON_'u(e:ses), v(e:ees)
CO.,CON/CORE/ XC, YC. C.Co RC, t._, VC
COt_ /TFAC/ TFAC, CFAC I TFAC " FACYOR FOR SIZE OF TIME STEP

l: COWON/ZOT/lOT
I Temporory Butlers

DIMENSION XB(B:SBS). YB(e:5_5). DX@(0:505). DYB(@:SeS).
t ue(e:se_), ve(e;ses)

CALL VELOCT I Velocities to get to the Intsrmedlats points.

TSTEP - .OO25/TFAC I The Intsrmsdl_ts points ore ot hnlf,'_oy.

IX) 2e ! - e, NPANEL ! Get to the Intermediate points.
XB(I) - XCX)
Ye(_) - _(t)
oxe(1) - ox(1)

ue(1) - u(o
ve(I) - v(I)
X(I) - X(I) + O([) • TSTEP

:'! Y(I) - Y(I) + V(I) * TSTEP
': 2@ GOHT[NU£
L

XC8 - XC

i_ YCO - YC

!i UCe- uc
I,! vce- vcXC - XC �UC* TSTEP

! i YC -- YC + VC • TSTEP

L,, DO 25 I - 1, NPANEL-t t EIt_moto Intsr_sd_oto pons_s.

,,i CX(1) - X(l+O - X([-t) [_
DY(]) = Y(I+I) - YCI-I)

,,, wcz) - SQRTCCXCX+1)- x(z-s)).,2 + (Y(x+l) - Y(x-1)),.2)/4.
i 25 CONTINUE

"i I - NPANEL I Extropolato =t the tip.

A - ((Y(I-2) - Y(I-I) ) • ( X(I-I)**2 - X([)**2 )
= - (Y(I-1) - Y([) ) • ( X(1-2)**2 - X(l_l)**2 )
• + (YCI-2) - Y(I-1) ) * ( Y(I-1)*.2 - Y(I)**2 )
• - (Y(i_I) - Y(I) ) * ( Y(I-2)*.2 - Y([-1)*=2 ))
• /((xo-z) - x(t-_)) , (Y(I-_)- Y(1) )
• - (X(I-1) - X(I) ) * (Y(I-2) - Y(I-1) )) / 4.

- (( x(l_t),*2 _ x(1)*,2 ) + ( _(l-t)*,_ ~ v(1)**2 )
• .- 2. * A * (XO-1) - XCX))) / 2 / (Y(X-S) - Y(X) )

OX(I)--(Y(I)-S)
cYO)- (xcI)-^)
w(I) -SO_T ((x(_) - xcH)),,2 + (Y(x) - _(x-o),,_)/2.

CALL VEL(X_T I The _ld-co.res correction

10 35 I - 1. NPANEL I Average I. the mld-co_r=e correction
U(X) - (ueCI) + u(l) ) / 2,

..... - - - ---- 000000-----02TSA05
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v(x),,(ve(x)+ v(x))1 2.
35 CONTINUE

oc,,( oce+ o.c) / 2.
vc- (vce+ vc ) / 2.

TSTEP _ .Og,_/TFAC

DO 50 [ ,N l, NPANEL I Final tranmlatlon.
X(I) - XO',I)+ U(I) * TSTEP
v(x) ,, Y_(x) + vO) . TST_:F'

Se CONTXNUI':'

XC '_ XCO + UC • TSTEP
YC " YCO + VC • TSTEP

I Stretching of tip core: coneerve volume of the vortex ring.
RC m RC * XCe/XC

x(e) - e
Y(O) _' Y(1)
v(o) - vO)

TIME m TIME • TSTEP

RETURN
END
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_UUR(_JTXNE EULER

I Thlm program leo Runge.-Kutto Integration echeme band _ limiting
I the Iorgeet convection of pnnete to ease fraction of their wldthm,

/PANEL/ x(e:ses), '¢(e:se5), ox(e:se5), oY(e:ses),

COMMON/TXME/ NPANgL, NSTEP, NT]ME, TIME, TSTEP
C0M,,_ON/CONV/u(e:se_), v(e:_e_)
_IM_ON /TFAC/ TFAC, GF'^C
COM_ /CONE/xC, YC, r,C,RC,uc, vc

CALL V£LOC:T

T$TEP - .ees / TFAC

_ Ponel width based time etep option , I
TSTEP m .1
DO tei - I, NPANEL
TPAN - W(|) / SQRTC U(Z)**2 + V(I).*2) / TFAC

1_ IF (TPAN ,LT. TSTEP) TSTEP - TPAN

..... I
DO 2_ I m e, NPANEL
X(Z) - X(I) + U(X) • TSTEP
YC[) - YCI) + V([) * TSTEP

20 CONTINUE

XCe - XC i
XC _ XC + UC * TSTEP i
¥C _ YC • VC * TSTEP

!

RC m RC * XCe / XC !

x(e) m e
Y(e) - Y(I)

v(e) - v(1)
TIME i, TIME + TSTEP

RETURN
END [_
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5UL]R_JTI NE VELOCT

I Thin progrnm calculotee the velocity field
I Induced by the penal• for thm program TCLLCALL.F_

COMMONpANEL/ x(e:_e5), Y(e:_ee), Dx(e:se_). oY(e:ser_).

COMMON/CONY/u(e:ee_), v(e:_e_)
COMMON/PRIME/ NPANI_L. NS'rEP. NTIME. TIME. TSTEP
COMMON/VELO/ R. )iX. YY. DXT. DYT. WW. G

/lOT/ lOT
COMMON/CO•E/XC. YC, OC,RC,UC,VC
p! m ASIN(1.) • 2,

IIIIlllllllllllllllllllll Loop over the tronlloted pan•In IIIIllllllllllllllllll
DO le J a I, NPANEL
UJ ,- e._
VJ m e.e

I ..... Loop over the Inducing ponell ........ I
DO 2_ i m t, NPANEL
e = X(!)
O = _(1)

= W(l)
DXT- DX(I)
DYT - DY(X)
xx - x(J) - x(I)
xY- Y(J) - Y(l)

I o¢. The Axllymmetrlc case ••*
IF (ZOT.GE.1) THEN

| I !nterpoloto the eel f-Induced velocity
!F ((XX.EQ.@),AHD.(YY.EQ.e)) THEN

XX,,-.1 • W#

CALL VELIN ( U!NA. V!NA)
CALL VELIO ( UIOA. VIOA)
CALL VELOUT( LK_TA. VOUTA)

_, XX" .1 *WW
, CALL VELIN ( UINB. VlNB)

CALL VEL!O ( U!OB, VlOB)
CALL VELOUT( UOUTB. VOUTB)
UIN - (ULNA + UINB) / 2.
VIN ... (VINA + VINB) / 2.
UlO ,,, (UIOA + UIOO) / 2. _,;
v!o - (VIOA+ VlO6) / 2.

| UOUT - (t_eJTA + UOUTB) / 2.
VOUT - (VOUTA + VOUTB) / 2.

ELSE
CALL VELIN ( U!N. V!N)
CALL VELIO ( UIO. VlO)
CALL VELOUT( U(X,IT. VOUT)

END IF
UJ - UJ + UIN + LI_T - UlO
Vd m VJ 4. VIN + VOUT - VIO

I •** 2D Co•o: Incl,dee the mirror Image component ***
ELSE

CALL VEL2D (UI.Vl)
xx - x(J) + x(1)
Y_ - Y(J) + Y(l)
4G. - DO(1)
DYT ,", - DY(1)
CALL VEL2D (U2.V2)

q_
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99 ,'

UJ - UJ + U1 + U2
VJ _ VJ 4" Vl + V2

lEND W

2¢ CONTXNU_
I' End of Loop ,I

U(J) ,. UJ
v(J) - vJ

le CONTINUE
IIIliilllllllllllllli_llllilll ¢*nd of Loop Ilillillllilllllilllliilllllilllllill

I Cololote the velocity Induced by the ttp_core

U2 - e
V2 m e
R - XC

DOlee d - 1, NPANEL
R _ XC
XX- X(J) - XC
YY - Y(J) - YC

_-" G- GC

IF (ZOT.GE.1) THEN I Axlly_lletrlc Case
, WWm .5

CALLV_LOU+(_,, vl) i
_: GO TO 98 _'
i END IF

p
I

CALL VEL2DF (U1. V1) I 2D COle with mirror Image
xx - X(a) + XC i,;

i
CALLVEL2Dr(U2, V2)

99 u(J) - u(J) + ul + u2
v(J)=v(d)+vl +v2 I

le@ CONTINUE I:

I I
I Calculate tire veiaclty Induced on the tip core by the ponell

UCm e "_
VC _ @

DO 110 Z _ 1, NPANEL
XX- XC- X(1)

.: YY=YC- Y(I)
DXT - OX(1)
DYT - DY(1)

_- w(1)
_+ O -_(1)
i R - X(l)

IF (ZOT,GE.1) THEN I Axlaymmntrlc Case
CALL VELIN {UIN, VlN)
CALL VELIO (UIO, via)
CALL VELOUT(ti_UT, VOUT)
U1 ,. UIN �UOUT - UlO
Vl -, VIN �VOUT - VlO
U2 ,,, 0

i _ V2 - e

E I GO TO 1@5 _,

00000002-TSA09



1(_

END IF

CALLV_L2D (UI,V1) I 2D caem with mirror ImaRe
xx. Re+ X(I)
_YT - UY(1)
ww-,- w(z)
0 --DG(X)
CALLVEL2D (U2,V2)

105 UO- UC + UI + U2
VC- VC + V| +V2

11_ OONTINUE

I 20 Coee Oply: Velocity induced by the mirror Imoge of the tip core
IF (ZOT.EQ.e) THEN
XX _ 2eXC
YY" e,O
G -"GO

CALL VEL2DF (UO,VO)
UC-UC+ U_
VC m VC + V8

END_F

I Axleymmetric Coee Only: The Self-induced Velocity of the Core
IF (ZOT.GE.1)VC- VC- OC/4_I/XC,(LOO(e,XC/eC)- .25)

U(e) - e.e

RETURN
END

N.

P:

E

gl
F_

N
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SDBROLIHNE REDISK(R, ZoG.NIN,N(_I'o_X,SL_4L.,D_LTAL)

C--.TRI_ DOES CURVE FITTING USXN_ DLENDEDPARAUGLA_ON R, Z, IH3AM
I Modified from SPIRAL,FOr( by John Knntellm for un with panelm

COMMON/TIME/ NP, N_, NT, T, TS
COMMON/CO_XC, YC, GO
COMMON/T_'AC/TFAC,OrAC
COMe.lOOT/ ZOT

DIMENSION e(e:Se_),Z(e:_),G(e:_e_),S(e:Se_),Q_(e:_eS).
$ az(e:seS).Ae(e=ee_).Al(e:_e_).A2(e:_).A_(_._es).
$ ee(e:se_).m(e:_e_).,_(e=_es).e_Ce:_e_).ce(o:se_).
$ cl(e:_es).c2(e:_e_).c3(e=_e_).GMID(e:ee_).SMXO(e_es).
$ Q(e:_eS).R_(e:_ese).zs(a:ee_e).AL(e:_eee).os(e=_ase)

DATA NSUD/5/

C"_'GET STRAIGHT LINE DISTANCES BETWEENPOINTS, $(1) I$ THE TOTAL
C DISTANCE ALONGTHE STRAIGHT L_NES TO NODE I

s(e)-e.e
DO 2g I-1,NIN

2D S(1)-S(I_I)+SQRT((Z(I)-Z(I_t))**2+(R(I)_R(I-1))=*2)

C--Get vnlul of I for the trolling extendod oegmont. Ohio voluo
C of S Io out ot tha prooumod end of the sleet.

S(NINH)BS(NIN)*e.S*(S(NIN)-S(N]I_,I))

_=-_GET SLOPESAT _CH INTERIOR NCDE, Q_(I)._)(R)/DS AT NODE l

IX) 3_ |mt,NIN-I i
SI"(S(I+O-SCI))I(S(H)-S(I))
S2_1.e/S1
s_-l.el(SCX+1)-sc]-.1))

_(|)-((R(I-1)-R(I))*SI-(R(I+I)-_t(I))*S2),S3
3e QZ(I)-((Z(I-t)-Z(I))*SI-(Z(I+I)-Z(I))*S2)*S3

C.-.-4_.OEF'SFOR INTERIOR SEGMENTS

DO 4e I=I,NIN-2

sl-t.e/(s(l+l)-S(]))
AeCX)..e(z) ,_
^_(x),,oeCx)
A2(I)mSI.(-QR(I+I)-2*Qf_(I)+3.SI*(R(I+I)=4_(])))
A_(I)-S_*S_*(Qe(X+_)_(I)-2.S_.(RO+_)-R(X)))
Se(Z)-Z(X)
m(1)-Qz(x)
B2(I)-Sle(--QZ(I+I)-2*GZ(I)+3*SI*(Z(I+I)-Z(])))

4e B3(I)-SI*Sle(QZ(I+I)+QZ(I)-2*St,(Z(I+I)_Z(I)))

Co--COEF'S FOR FIRST SEGMENT

s_-s(t)-s(e)
s_-s(2)-s(e)
S_P_l.e/(S(2)-$(l))
^e(e)-R(e)
^I(e)-((R(1)-R(e))*S2/Sl-(R(2)_R(e))*Sl/S2),S_
A2(e)-((R(2)-t_(_))/S2-(R(t)-R(e))/S1)*S_
a_(e)-e.e
ee(e)-z(e)
¢l(e)-((zo)-z(e)).s2/sl-(z(2)-z(e)).sMs2).s_
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.2(s)-Ciz(_,).,z(a))/_2-.Czil)..,zce))/aO.,_z
a3(a),-e.e

C--COE3"S FI_ LAST 5E(iMENT

N-NIN

St..S(N)_S(N-t )
S2-S(N_2)_-S(N-,I)
S_I .*I(S(N"2)-S(N))
A, CN-I),.e(e_t)
At(N-t).,((,(N)'-R(_I)),S21St_(R(N-2)'_(h_I))._IIS2).S_
A2(N_I),.((_(N_2)--e(N-.t))/S2-(H(N).-e(N_I))/Sl),S_
A3(N_I ),-e.O

ee(N_t)-Z(N_l)
,I(r_t)..((Z(N)-Z(_t)).S2/Sl-(Z(N-2)-Z(_O).SMS2)eS_
,2(,-I)-((Z(N-2)-Z(_I))/S2-(Z(N)-Z(N-I))/Sl).S_

C_Get the ongle of the ring with Index NSMALL wrt the tip ©ore !

CALL PULANG(NIN, THNIN)

C_Oet the "A** ooefflclent for the Kodln eplrol

RNLImXNU(THNIN)
IF (ABS(SIN(TIININ)) .G{, B.S) THEN
/V-(YC_Z(NIN))/(TIININ**(--RNU)*SIN(THNIN))

EkSE

A-(XC--R(NXN))/(THN IN*•(-RNU)*COS (THNIN))
ENOIF

|
C---GETARRAY OF"R AND 7 AT THE SUBINTERVAL LOCATIONS, AND COMPUTE
C THE TOTAL LENGTHOF THE CURVE

C--First do the blended porobolc eogmente

RS(g)-Ae(e)
zs(e)..ee(e)
AL(O)',(),Q
DO Sg I-O,NIN_I

DO 5g KSUI_.t ,NSUB
J'I*NSUB+KSUB
T'(S(I+I )-5( ! ) ) *FLOAT(KSUB)/FLOAT (NSUB) "_.,
RS(J ),.,AS( ! )+Te (At ( ! ) 2(! ) â�F 0�r�I) ) ) "_
ZS( J).-B_(1)+T= (BI( i)+T= (B2(I)+T,S3(I)))

5g AL( J)-AL( J-I)+SQRT( (RS( J).-RS(J-1)).,2+(ZS(J)-Z$(J-I)),¢2)

C_The next few eectlonx find the volue of thet(] ot the end of the
C trolling extended legment. I.e.. gets the theto oorroepondlng
C to or¢length S(NIN+I)

C--Flret, before doing the numerl¢ol Integrdtlon. need to get o
C vol.e to uee for delto there

]TER$'_B

DSGW-(S(N!H+I )-$(NIN))/20.O
DT(_,8.el

62 TTEMP-TflN IN+DTG/2. @
RNU.,XNG(TTEMP)
| TERSQ.|TER$-_1
IF (ITERS .GT. 1Be) STOP 'ITERS .OT. IS8 !N LOOP Cl'
DSC._A*TTI[MPo• (_RNLF-!. B) eSt..'_T(RNUI e2+TTEldPee2 ) eDTG
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DT(',t_,LO_;(;W/O_;) ,D'r_
I1" (AD_;(I_'fGN-DTG) ,kl', 8,_B1) _J TO tit
DTG-DI'(_N
Cd) TO I_

81 DTG-DTGN

C---Nuw hnve diltn thet_ (I.e.. blC) which Mm.id yield opprox. 2_
C Atepm In the mmlerl©ol Integrntlon fr_ S(NIN) to S(NXN'I.1).

C_--N_,wdo the numerical Integrntlon mid me(:rch for theta(NXNt,1)

SENI>,)S(NINI,) )_,$(NXN)
ST;'_O. 0
TH_THNIN

64 RNL,-XNU(TH)
XTEt_',](TEN_+ 1

IF' (XTENe' .GT. lee) STOP '|TER_ .GT. leo LOOP G3'
ARGI_A*TIf(,m (-RNU_I, 0 )*S(_T (RNU*o2+TH_)e2)
RNU-XNU(TH+DTG)
ANG_-A* ( TH+DTG) * e(--RNU_1,0) *_QRT(RNU* e2+(TIHDTG) ee2)
D_(ARG I+Af_G2) *DTG/2. e
XE (STH ��lSEND) GO TO 63
STH,,_TH ‚�Î�TtIqTH+DTG

GO TO 64

G3 FI;_AC_( SENIP.$TH)/D$
THNINImTH+F_ACeDTG

C_-'Now Don get the cut)--Inferrer Ioc¢lt|one over the extended eplrol
C eegme.t.

DTH-( THNI NI-THN |N)/NSUD
DO 65 KSUB_I)NSUB
THETA_THNI hLtKSUI]*DTH
J_'NXNeNSUB'FKSDD
RNU,,XNU(THETA)
R$( J)-XC-A*THETAe • (-_NU) ICO$ (THE:TA)
Z$( d)-YC-AeTHCTA* * (-RNU) *S | N(THETA)
AL( J),,AL(J-I)+SQRT((RS(J)-RS( J-t )) ee2+(ZS(d)-ZS(J._1)) **2)

6,5 CONT]NUE

I Redletrlbute the C|rculotlon over the S.b_egmente

DO 751 ! " @, NIN
00 751 J a 1. NSUB
K m I I NSUB + J
IF (I,EO.e) THEN

IF (ZOT.LE.1) THEN
G$(K) - FLOAT(J)/HSUB • (1.+G(1))/2. - 1,
_s(e) - -1,

ELSE

GS(K) ,, FLOAT(J)/NSUD ,) G(1)/2.
GS(e) - O

END XE

ELSE IF (I.EO.NXN) THEN
DGN - (G(NIN) - G(NIN_I))/_
G$(K) - FLOAT(J)/N,SUB * IDGH+ G(N;I_I) + DGN

ELSE
_X - (O(X+I) .- 0(X_1))/2
DGIMI - (G(I) - G(|-1))/2
GS(K) - (FLOAT(J)/NSUEI * DG_) + GCX-1) + DGIMI

%
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,g ,,
ENI) IF

751 CDNTINIIE

C--TOTAL LLN_TH Of' CtlHVE 1_ 5LqL

SI_4L-AL((NIN+I)*NSOt])

IIIIIIIIIIIIIIIIIlllllllllllllltllilllllll|lllzltllllllllllllllllllllll|lll|lll
I Panel Dlmeretlxatlon Crlterlum

IENU - (NIN+I) • NStJ_ I Limits Relotlve _Imt_uce End/Core
XLSE_ - _T((XC--RS(IEND))ee_+(YC-Z_(]END))z*2)/GF'AC
|E (XLSEG.OT,DELTAL)

-_, _ XL_ES _ DELTAL I ^lwuym Shrinking Criteria
_ DELTAL _ XLSEG

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

--_ C--GET NEW R AND Z POINT8
)

31_ lml

" _! DO 60 JmI.NSUe*(NIN_I)

' I. Cql¢.lotl the _Iitgnge to the powltlonm of the l_'puoell t

_+_ WJme- S_X((eSO)- r(;-l) ),,2 + (zsO) - Z(I-1) ),,2 )
___i I...................................................... I

_'. IF (XLSEG .LT. WJMI .0_. XLS_G .ST, WJMe) GO TO 6e I If n,,t eno_lgh,
--'_ FRAC._( XLS[G + WJM1 )/( WJMO- WJM1 ) I C_lQ.Inte wher_ th,, r,_w

R(I)-FRAC.(RS(J)_RB(J_I))+R_(d-1) I pnn_l edO_ will _ ,b ._p.
z(x)._r^c,(zs(a)-zs(J-O)+zs(J-1)
1-I+1

_'_ IF (I.GT._) GO TO 3_ I TOO _,'ny punelel
GO TO _0

6e CONTINUE
, : 7_ CONTINUE

R(1) - RS(NSOe,(NI,+O)
z(I). ::, (N_U_.(n_n+O)

: , O(1) ¢ GS(NSUee(NIN_I))

_ i RETURN

I If the mheet II too atretched to the ponwled by SOO ponel|, then

I stretch the panels by le_.

.__ 3re XLSE_ - XLSEG e1.1

WRITE(8,*) '***_*** OVER _OO PANELS e******* TSTEP, DLSEG:', NT. XLSEGGOTO 310
I ............................... I

"" EN_

w

,7
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SUI_8OUTIN_ PULANG(NIN,THNIN)

Special 5ubrcmtln¢ far routlnu REDISKwhich ¢xtrQpolotom
the lhePt edge ,mtng Kudmn'e exponential aplrut modat

COM,.tON/CONr.'/ XC, YC, C¢
COMMON/PANEL/ R(@:5_5).Z(e:SeS).DX(e:SeS),DY(e:_eS),

S w(e:_es).(;Ak_(e:5e5)
DIMENSIOND'tTA(_:5e5)

REAL*4 MAG
C

RT..XC
ZT-YC

C
A",,-,1 .e
Ib,,O,_

i C.,R(e).,-RT
' _-Z(e)-ZT

DOT=,AeC+B*D
- ' CRO,,,qS-A*D,"B•C

MAG_;Q_T((A*A+_*B) *(C*C )
ARG,,,.DOT,t_IAG
IF (ABS(ARG) .GT. 1.1}) ARG,,SlGN(I.e.NtG)

1 BETA(O)-$|GN(1.(}.CROSS)*AGOS(ARG)
--_ c

DO 1(_@lml,NIN
A=R( X-1)-RT
e-z ( H )-ZT
C,.R(Z)-eT
D,,Z(X)-ZT
DOT'*A*C'+B*D
CROS_A*D"6*C

MA_,SQRT((A,A.H_*S)• (C*C_*D))
ARC,_DOT/MAG
IF (ABS(ARG) .GT. l.e) ARG.*:;1GN(1.e.ARG)

lee BETA(I)-13ETA(I-1)+SIGN( 1.e.CROSS)*ACOS(ARG)

TH_IN-I_£TAiNIN)

RETURN

END
FUNCTIONXNU(THETA)
DATAPI/3. 141592654/
XNU,,2.0/3. O
IF (TH[TA ,LT. 2,@*PL) THEN

XNU,.,(I.e/(2.e,PX_l .e))-(t .e/(THET^-I .e)) _.e
ENDIF

RETURN
END

O0000002-TSB01



SIJgROUTXNEPANEL_R (X.Y.DX.DY.W.DG.G.NPANEL)

! Tl_ta progrom tak*! the rem.ltm from routlna REI)]SK _nd ¢raataa pan*la

DIMENSION e(e:s,_), z(e:ses)

DO 10 X m 1, NPANEL
R(X) - (XCX) + X(H) ) / 2.
z(x) - (v(x) + Y(H) ) / 2.
Dx(x) - x(1) _ x(x_l)

w(i) - SQR¥( DX(I)**2 + DY(|)*,2)/2.
_(x) - (_(x) - _(x._)) / w(x) 1 2.

1@ CA;_IT|NUE

DO 2e | - t. ;_P^NEL
X(Z) - e(x)

2e v([) - z(x)

RETURN
EhID

e

O0000002-TSB02
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Appendix D

Inputs Used to Generate the Figures in the Text

Figure 5-7: FAUptie_lly L_ded Wing Wake C._¢
NPANEL - 80
TFAC - 1
OFAC - 1
NCORE = 4
7A)T -0

Figure5-13:Formulationof VortexRing by a Disk
NPANEL - 80

"_ TFAC 1_, sm

=_,_ GFAC - l
=A'_ NCORE - 1
_,_:i ZOT " 1

: Figure5-21:Modelled llelicopter Rotor Wake Case
--; NPANEL - 80
_' TFAC - 1

GFAC - l
" NCORE - 1.

ZOT - 2

Figure 5-28: I_monstration of Kelvin-ltslmholtz-type Ins_abiUty
_is exlzrimentwas 1_fformcdusingan earlyvet#ion
of the simulationprogram with different mt of inputs-

Figure 5-29: Instability in the l_olloUp of Disk Wake
NPANF.L - gO

=_ TFAC - 1
_' GFAC - 2
-_ NCOR]'."- 1
' Z_YI" -I

O0000002-TSB03
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m Am,,,,The self-inducedevolutionof a vortex sheetwas simulatedby modeling

the sheet using an integrationof discreteelementsof vorticity. Replacing
small sectionsof a vortex sheet by flat panelsof constantvorticityis
found to reproducemore accuratelythe Initlalconditionsfor the Lagrangian :
simulationtechniquethan replacementby point vortices. The flat panel
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dimensionaland axisymmetricvortexsheetswas computedusing the panel
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